Skip to main content
Log in

Evaluation the Properties of Polycaprolactone/Fluorapatite Nano-biocomposite

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In this study, nano-biocomposites of polycaprolactone (PCL) as the matrix and different amounts of nanofluorapatite (nFA) (0, 10, 20 and 30 wt.%) as the reinforcement were prepared for possible scaffold fabrication using the fused filament fabrication (FFF) 3D printer. Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive Spectroscopy (EDS) showed that nFA particles were well distributed in the PCL matrix. X-ray diffraction analysis (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) depicted no chemical interaction between the elements of the composite. Differential Scanning Calorimetric (DSC) analysis was then used to assess the thermal properties of the composites, suggesting that this could be due to the amorphous phase formation of the intermolecular hydrogen bonds between PCL and nFA, resulting in the suppression of PCL crystallization. The results of mechanical characterization also showed that the addition of nFA up to 20 wt.% to the PCL increased the tensile and yield strength, as well as reducing the elongation at both yield and failure points and increasing the Young modulus. The best mechanical properties were obtained for the PCL/20nFA composite. Tensile strength and Young modulus were increased by 30% and 179%, respectively; meanwhile, elongation of PCL/20nFA was decreased by 70%, as compared to the naked PCL. These changes could be attributed to the better distribution of the nFA filler in the PCL matrix. According to the obtained results, PCL/20nFA could be regarded as a good composite in terms of the mechanical properties for the regeneration of the bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li, L. Q., & Choong, C. (2013). Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Engineering Part B: Reviews, 19, 485–502.

    Article  Google Scholar 

  2. Brahatheeswaran, D., Yoshida, Y., Maekawa, T., & Sakthi, K. D. (2011). Polymeric scaffolds in tissue engineering application: a review. International Journal of Polymer Science, 2011, 290–602.

    Google Scholar 

  3. Teoh, S. H., Tang, Z. G., & Hastings, G. W. (1998). Thermoplastic polymers in biomedical applications: structures, properties and processing. Handbook of biomaterial properties (pp. 270–301). Springer.

  4. Rimpongpisarn, T., Wattanathana, W., Sukthavorn, K., Nootsuwan, N., Hanlumyuang, Y., Veranitisagul, C., & Laobuthee, A. (2019). Novel luminescent PLA/MgAl2O4: Sm3+ composite filaments for 3D printing application. Materials Letters, 237, 270–273.

    Article  Google Scholar 

  5. Arastouei, M., Khodaei, M., Atyabi, S. M., & Jafari, N. M. (2021). The in-vitro biological properties of 3D printed poly lactic acid/akermanite composite porous scaffold for bone tissue engineering. Materials Today Communications, 27, 102–176.

    Article  Google Scholar 

  6. Shao, W., He, J., Sang, F., Wang, Q., Chen, L., Cui, S., & Ding, B. (2016). Enhanced bone formation in electrospun poly (l-lactic-co-glycolic acid)- tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide. Materials Science and Engineering: C, 62, 823–834.

    Article  Google Scholar 

  7. Puigoriol-Forcada, J. M., Alsina, A., Salazar-Martín, A. G., Gomez-Gras, G., & Pérez, M. A. (2018). Flexural fatigue properties of polycarbonate fused-deposition modelling specimens. Materials and Design, 155, 414–421.

    Article  Google Scholar 

  8. Park, J., Lee, S. J., Jo, H. H., Lee, J. H., Kim, W. D., Lee, J. Y., & Su, A. (2017). Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering. Journal of Industrial and Engineering Chemistry, 46, 175–181.

    Article  Google Scholar 

  9. Adiguzel, Z., Sagnic, S. A., & Aroguz, A. Z. (2017). Preparation and characterization of polymers based on PDMS and PEG-DMA as potential scaffold for cell growth. Materials Science and Engineering: C, 78, 942–948.

    Article  Google Scholar 

  10. Unagolla, J. M., & Jayasuriya, A. C. (2019). Enhanced cell functions on graphene oxide incorporated 3D printed polycaprolactone scaffolds. Materials Science and Engineering: C, 102, 1–11.

    Article  Google Scholar 

  11. Kotela, I., Podporska, J., Soltysiak, E., Konsztowicz, K. J., & Blazewicz, M. (2009). Polymer nanocomposites for bone tissue substitutes. Ceramics International, 35, 2475–2480.

    Article  Google Scholar 

  12. Loh, X. J., Yee, B. J. H., & Chia, F. S. (2012). Sustained delivery of paclitaxel using thermogelling poly (PEG/PPG/PCL urethane) s for enhanced toxicity against cancer cells. Journal of Biomedical Materials Research Part A, 100, 2686–2694.

    Article  Google Scholar 

  13. Lin, W., Shen, H., Xu, G., Zhang, L., Fu, J., & Deng, X. (2018). Single-layer temperature-adjusting transition method to improve the bond strength of 3D-printed PCL/PLA parts. Composites Part A: Applied Science and Manufacturing, 115, 22–30.

    Article  Google Scholar 

  14. Bonilla, C. E. P., Trujillo, S., Demirdögen, B., Perilla, J. E., Elcin, Y. M., & Ribelles, J. L. G. (2014). New porous polycaprolactone–silica composites for bone regeneration. Materials Science and Engineering: C, 40, 418–426.

    Article  Google Scholar 

  15. Johari, N., Fathi, M. H., & Golozar, M. A. (2012). Fabrication, characterization and evaluation of the mechanical properties of poly (ε-caprolactone)/nano-fluoridated hydroxyapatite scaffold for bone tissue engineering. Composites Part B: Engineering, 43, 1671–1675.

    Article  Google Scholar 

  16. Chen, J. P., & Chang, Y. S. (2011). Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiation of mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 86, 169–175.

    Article  Google Scholar 

  17. Qu, H., & Wei, M. (2006). The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behavior. Acta Biomaterialia, 2, 113–119.

    Article  Google Scholar 

  18. Pahlevanzadeh, F., Bakhsheshi-Rad, H. R., & Hamzah, E. (2018). In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements. Journal of the Mechanical Behavior of Biomedical Materials, 82, 257–267.

    Article  Google Scholar 

  19. Wang, M. (2003). Developing bioactive composite materials for tissue replacement. Biomaterials, 24, 2133–2151.

    Article  Google Scholar 

  20. Park, S. A., Lee, S. J., Seok, J. M., Lee, J. L., Kim, W. D., & Kwon, I. K. (2018). Fabrication of 3D printed PCL/PEG polyblend scaffold using rapid prototyping system for bone tissue engineering application. Journal of Bionic Engineering, 15, 435–442.

    Article  Google Scholar 

  21. Bhadang, K. A., & Gross, K. A. (2004). Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings. Biomaterials, 25, 4935–4945.

    Article  Google Scholar 

  22. Sundfeldt, M., Widmark, M., Wennerberg, A., Kärrholm, J., Johansson, C. B., & Carlsson, L. V. (2002). Does sodium fluoride in bone cement affect implant fixation? Part I: bone tissue response, implant fixation and histology in nine rabbits. Journal of Materials Science: Materials in Medicine, 13, 1037–1043.

    Google Scholar 

  23. Heydari, Z., Mohebbi-Kalhori, D., & Shafiee Afarani, M. (2017). Engineered electrospun polycaprolactone (PCL)/octacalcium phosphate (OCP) scaffold for bone tissue engineering. Materials Science and Engineering: C, 81, 127–132.

    Article  Google Scholar 

  24. Xue, W., Chen, P., Wang, F., & Wang, L. (2019). Melt spinning of nano-hydroxyapatite and polycaprolactone composite fibers for bone scaffold application. Journal of Materials Science, 54, 8602–8612.

    Article  Google Scholar 

  25. Thomas, V., Jagani, S., Johnson, K., Jose, M. V., Dean, D. R., Vohra, Y. K., & Nyairo, E. (2006). Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. Journal of Nanoscience and Nanotechnology, 6, 487–493.

    Article  Google Scholar 

  26. Medeiros, G. S., Muñoz, P. A., de Oliveira, C. F., da Silva, L. C., Malhotra, R., Gonçalves, M. C., & Fechine, G. J. (2020). Polymer nanocomposites based on poly (ε-caprolactone), hydroxyapatite and graphene oxide. Journal of Polymers and the Environment, 28, 331–342.

    Article  Google Scholar 

  27. El-Habashy, S. E., Eltaher, H. M., Gaballah, A., Zaki, E. I., Mehanna, R. A., & El Kamel, A. H. (2021). Hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles for enhanced osteogenesis. Materials Science and Engineering: C, 119, 111–599.

    Google Scholar 

  28. Lin, W. C., & Tang, C. M. (2020). Evaluation of polyvinyl alcohol/cobalt substituted hydroxyapatite nanocomposite as a potential wound dressing for diabetic foot ulcers. International Journal of Molecular Sciences, 21, 31–88.

    Google Scholar 

  29. Sattary, M., Rafienia, M., Kazemi, M., Salehi, H., & Mahmoudzadeh, M. (2019). Promoting effect of nano hydroxyapatite and vitamin D3 on the osteogenic differentiation of human adipose-derived stem cells in polycaprolactone/gelatin scaffold for bone tissue engineering. Materials Science and Engineering: C, 97, 141–155.

    Article  Google Scholar 

  30. Montazeri, N., Jahandideh, R., & Biazar, E. (2011). Synthesis of fluorapatite–hydroxyapatite nanoparticles and toxicity investigations. International Journal of Nanomedicine, 6, 197–201.

    Google Scholar 

  31. Ghorbani, F. M., Kaffashi, B., Shokrollahi, P., Akhlaghi, S., & Hedenqvist, M. S. (2016). Effect of hydroxyapatite nano-particles on morphology, rheology and thermal behavior of poly (caprolactone)/chitosan blends. Materials Science and Engineering: C, 59, 980–989.

    Article  Google Scholar 

  32. Fanovich, M. A., Ivanovic, J., Zizovic, I., Misic, D., & Jaeger, P. (2016). Functionalization of polycaprolactone/hydroxyapatite scaffolds with Usnea lethariiformis extract by using supercritical CO2. Materials Science and Engineering: C, 58, 204–212.

    Article  Google Scholar 

  33. Jaiswal, A. K., Chhabra, H., Kadam, S. S., Londhe, K., Soni, V. P., & Bellare, J. R. (2013). Hardystonite improves biocompatibility and strength of electrospun polycaprolactone nanofibers over hydroxyapatite: a comparative study. Materials Science and Engineering: C, 33, 2926–2936.

    Article  Google Scholar 

  34. Moeini, S., Mohammadi, M. R., & Simchi, A. (2017). In-situ solvothermal processing of polycaprolactone/hydroxyapatite nanocomposites with enhanced mechanical and biological performance for bone tissue engineering. Bioactive Materials, 2, 146–155.

    Article  Google Scholar 

  35. Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications-A comprehensive review. Advanced Drug Delivery Reviews, 107, 367–392.

    Article  Google Scholar 

  36. Weber, A. F., Monteiro, R. S., Malmonge, S. M., Souza, M. T., Petil, O., & Daguano, J. K. M. B. (2019). Mechanical evaluation of Poly-ε-caprolactone and biosilicate® composites. XXVI Brazilian congress on biomedical engineering. Springer (pp. 89–92)

    Google Scholar 

  37. Andrzejewska, A. (2019). Biomechanical properties of 3D-printed bone models. Bio Systems, 176, 52–55.

    Article  Google Scholar 

  38. Khodaei, M., Amini, K., & Valanezhad, A. (2020). Fabrication and characterization of poly lactic acid scaffolds by fused deposition modeling for bone tissue engineering. Journal of Wuhan University of Technology-Materials Science Edition, 35, 248–251.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MM and MK conceived and designed the experiment. MM performed the experiments. KA and AH contributed to sthe acquisition of data. AH, KA and MK analyzed and interpreted the data. MM wrote the manuscript. All authors contributed to the study in significant ways and have approved the final manuscript.

Corresponding authors

Correspondence to Kamran Amini or Ali Heidari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, M., Amini, K., Heidari, A. et al. Evaluation the Properties of Polycaprolactone/Fluorapatite Nano-biocomposite. J Bionic Eng 19, 179–187 (2022). https://doi.org/10.1007/s42235-021-00123-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00123-7

Keywords

Navigation