Skip to main content
Log in

Improving Dispersion and Mechanical Properties of Polypropylene/Graphene Nanoplatelet Composites by Mixed Solvent-Assisted Melt Blending

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

To improve the dispersion of graphene nanoplatelet (GNP) in polypropylene (PP), GNP was exfoliated in a mixed solvent of p-xylene and N,N-dimethylform-amide (DMF) and the exfoliation of GNP was maintained by the addition of a compatibilizer before the melt blending. The concentration of the dispersed GNP in various ratios of the mixed solvents was measured in order to confirm the effect of the mixed solvent on the pre-treatment process. As a compatibilizer for the composite, pyrene-functionalized maleic anhydride-grafted polypropylene (Py-PP) was synthesized. The dispersion state of the composites was analyzed by the three dimensional non-destructive X-ray micro-computed tomography (3D micro-CT). The improved dispersion of GNP resulted in a significant enhancement in the mechanical properties. Young’s modulus of PP composites with 2 wt% GNP has increased by 43% compared with that of PP. These results are attributed not only to the improved interfacial interaction between PP and GNP, but also to the homogeneous dispersion state of the GNP in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Tripathi, G. S. S. Rao, A. B. Mathur, and R. Jasra, RSC Adv., 7, 23615 (2017).

    Article  CAS  Google Scholar 

  2. W. K. Chee, H. N. Lim, N. M. Huang, and I. Harrison, RSC Adv., 5, 68014 (2015).

    Article  CAS  Google Scholar 

  3. Q. Lu, H. S. Jang, W. J. Han, J. H. Lee, and H. K. Choi, Macromol. Res., 27, 1061 (2019).

    Article  CAS  Google Scholar 

  4. B. Li and W.-H. Zhong, J. Mater. Sci., 46, 5595 (2011).

    Article  CAS  Google Scholar 

  5. M. J. Allen, V. C. Tung, and R. B. Kaner, Chem. Rev., 110, 132 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. H. Kim, A. A. Abdala, and C. W. Macosko, Macromolecules, 43, 6515 (2010).

    Article  CAS  Google Scholar 

  7. T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, Prog. Polym. Sci., 35, 1350 (2010).

    Article  CAS  Google Scholar 

  8. G. Mittal, V. Dhand, K. Y. Rhee, S.-J. Park, and W. R. Lee, J. Ind. Eng. Chem., 21, 11 (2015).

    Article  CAS  Google Scholar 

  9. K. Kalaitzidou, H. Fukushima, and L. T. Drzal, Compos. Sci. Technol., 67, 2045 (2007).

    Article  CAS  Google Scholar 

  10. D. R. Paul and L. M. Robeson, Polymer, 49, 3187 (2008).

    Article  CAS  Google Scholar 

  11. H. Kwon, D. Kim, J. Seo, and H. Han, Macromol. Res., 21, 987 (2013).

    Article  CAS  Google Scholar 

  12. D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, Prog. Mater. Sci., 90, 75 (2017).

    Article  CAS  Google Scholar 

  13. K. H. Jung, H. J. Kim, M. H. Kim, and J.-C. Lee, Macromol. Res., 28, 241 (2020)

    Article  CAS  Google Scholar 

  14. S. Ganguly, S. Mondal, P. Das, P. Bhawal, T. K. Das, S. Chosh, S. Ramanan, and N. C. Das, Macromol. Res., 27, 268 (2019).

    Article  CAS  Google Scholar 

  15. J.-H. Woo and S.-Y. Park, Macromol Res., 24, 508 (2016).

    Article  CAS  Google Scholar 

  16. S. H. Ryu and A. M. Shanmugharaj, Mater. Chem Phys, 146, 478 (2014).

    Article  CAS  Google Scholar 

  17. N. Song, J. Yang, P. Ding, S. Tang, Y. Liu, and L. Shi, Ind. Eng. Chem. Res., 53, 19951 (2014).

    Article  CAS  Google Scholar 

  18. O. C. Compton and S. T. Nguyen, Small, 6, 711 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. F. You, D. Wang, X. Li, M. Liu, G.-H. Hu, and Z.-M. Dang, RSC Adv., 4, 8799 (2014).

    Article  CAS  Google Scholar 

  20. P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, and S. Fu, Polymer, 52, 4001 (2011).

    Article  CAS  Google Scholar 

  21. Y. Hernandez, M. Lotya, D. Rickard, S. D. Bergin, and J. N. Coleman, Langmuir, 26, 3208 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. W.-W. Liu, B.-Y. Xia, X.-X. Wang, and J.-N. Wang, Front Mater. Sci., 6, 176 (2012).

    Article  Google Scholar 

  23. M. Yi, Z. Shen, X. Zhang, and S. Ma, J. Phys. D: Appl Phys., 46, 025301 (2013).

    Article  CAS  Google Scholar 

  24. J. Cho, I. Jeon, S. Y. Kim, S. Lim, and J. Y. Jho, ACS Appl. Mater. Interfaces, 9, 27984 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. D. Parviz, S. Das, H. S. T. Ahmed, F. Irin, S. Bhattacharia, and M. J. Green, ACS Nano, 6, 8857 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. D. Dastan, Appl Phys. A, 123, 299 (2017).

    Article  CAS  Google Scholar 

  27. W.-D. Zhou, D. Dastan, J. Li, X.-T. Yin, and Q. Wang, Nanomaterials, 10, 785 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  28. X.-T. Yin, J. Li, D. Dastan, W.-D. Zhou, H. Garmestani, and F. M. Alamgir, Sens. Actuators B, 319, 128330 (2020).

    Article  CAS  Google Scholar 

  29. D. Dastan and A. Banpurkar, J. Mater. Sci., 28, 3851 (2017).

    CAS  Google Scholar 

  30. D. Dastan, P. U. Londhe, and N. B. Chaure, J. Mater. Sci., 25, 3473 (2014).

    CAS  Google Scholar 

  31. X.-T. Yin, W.-D. Zhou, J. Li, P. Lv, Q. Wang, D. Wang, F. Wu, D. Dastan, H. Garmestani, Z. Shi, and S. Talu, J. Mater Sci., 30, 14687 (2014).

    Google Scholar 

  32. M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovrn, G. S. Duesberg, and J. N. Coleman, J. Am. Chem. Soc., 131, 3611 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. C. M. Hansen, Solubility Parameters-An Introduction, in Hansen Solubility Parameter: A User’s Handbook, CRC Press, Boca Raton, 2000.

    Google Scholar 

  34. J. G. Martínez-Colunga, S. Sanchez-Valdes, L. F. Ramos-deValle, O. Perez-Camacho, E. Ramirez-Vargas, R. Benavides-Cantú, C. A. Avila-Orta, V. J. Cruz-Delgado, J. M. Mata-Padilla, T. Lozano-Ramírez, and A. B. Espinoza-Marúnez, Polym.-Plast. Technol. Eng., 57, 1360 (2017).

    Article  CAS  Google Scholar 

  35. W. Hu, T. Li, D. Dastan, K. Ji, and P. Zhao, J. Alloy Comp., 818, 152933 (2020).

    Article  CAS  Google Scholar 

  36. D. Dastan, S. L. Panahi, and N. B. Chaure, J. Mater Sci., 27, 12291 (2016).

    CAS  Google Scholar 

  37. J. You, H.-H. Choi, Y. M. Lee, J. Cho, M. Park, S.-S. Lee, and J. H. Park, Compos. Part B: Eng., 164, 710 (2019).

    Article  CAS  Google Scholar 

  38. J. U. Roh, S. W. Ma, W. I. Lee, H. Thomas Hahn, and D. W. Lee, Compos. Part B: Eng., 45, 1548 (2013).

    Article  CAS  Google Scholar 

  39. A. J. Duguay, J. W. Nader, A. Kiziltas, D. J. Gardner, and H. J. Dagher, Appl Nanosci., 4, 279 (2013).

    Article  CAS  Google Scholar 

  40. L. Gong, I. A. Kinloch, R. J. Young, I. Riaz, R. Jalil, and K. S. Novoselov, Adv. Mater., 22, 2694 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. S. R. Ahmad, C. Xue, and R. J. Young, Mater Sci. Eng. B, 216, 2 (2017).

    Article  CAS  Google Scholar 

  42. J. T. Choi, D. H. Kim, K. S. Ryu, H. M. Jeong, C. M. Shin, J. H. Kim, and B. K. Kim, Macromol. Res., 19, 809 (2011).

    Article  CAS  Google Scholar 

  43. L. Liu, Y. Sheng, M. Liu, M. Dienwiebel, Z. Zhang, and D. Dastan, Tribol. Int., 140, 105727 (2019).

    Article  CAS  Google Scholar 

  44. M. Liu, C. Y. Li, L. Liu, Y. Ye, D. Dastan, and H. Garmestani, Mater Sci. Technol., 36, 284 (2020).

    Article  CAS  Google Scholar 

  45. X. L. Ji, J. K. Jing, W. Jing and B. Z. Jiang, Polym. Eng. Sci., 42, 983 (2002).

    Article  CAS  Google Scholar 

  46. J.-Z. Xu, C. Chen, Y. Wang, H. Tang, Z.-M. Li, and B. S. Hsiao, Macromolecules, 44, 2808 (2011).

    Article  CAS  Google Scholar 

  47. M. Mucha, J. Marszalek, and A. Fidrych, Polymer, 41, 4137 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Young Jho.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This work was supported by the Institute of Chemical Processes (ICP) at Seoul National University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.G., Lee, S., Cho, J. et al. Improving Dispersion and Mechanical Properties of Polypropylene/Graphene Nanoplatelet Composites by Mixed Solvent-Assisted Melt Blending. Macromol. Res. 28, 1166–1173 (2020). https://doi.org/10.1007/s13233-020-8144-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8144-7

Keywords

Navigation