Skip to main content
Log in

Influence of nitrogen moieties on CO2 capture by polyaminal-based porous carbon

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The escalating level of CO2 in the atmosphere is the chief contributor to global warming and climate change. Existing technologies for post-combustion CO2 scavenging and air separation are inefficient and energy intensive. The cost-effective fabrication of adsorbents with efficient CO2 capture ability is the ultimate goal of the present work. Hence, a melamine-based porous organic polymer (MBPP) was synthesized by single-step condensation of isophthalaldehyde and 2,4,6-triamino-1,3,5-triazine using Schiff base chemistry. Pyrolysis of the as-prepared polymer at 800 °C produced nitrogen-rich porous carbon (NRC), which exhibited greater adsorption potential than the initial polymer. The fabricated materials were characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, thermal-gravimetric analysis, elemental analysis, textural analysis, and CO2 capture measurements. The moderately high surface area 445 m2·g-1 was exhibited by NRC with the CO2 capture of 128.37 mg·g-1 (2.91 mmol·g-1) at 273 K and 1 bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna, and B. Chen, Nat. Commun., 3, 954 (2012).

    Article  Google Scholar 

  2. K. M. K. Yu, I. Curcic, J. Gabriel, and S. C. E. Tsang, ChemSusChem, 1, 893 (2008).

    Article  CAS  Google Scholar 

  3. K. M. Nelson, S. M. Mahurin, R. T. Mayes, B. Williamson, C. M. Teague, A. J. Binder, L. Baggetto, G. M. Veith, and S. Dai, Micropor. Mesopor. Mater., 222, 94 (2016).

    Article  CAS  Google Scholar 

  4. S. Y. Lee and S. J. Park, J. Anal. Appl. Pyrol., 106, 147 (2014).

    Article  CAS  Google Scholar 

  5. H. Yuan, L. Y. Meng, and S. J. Park, Carbon Lett., 19, 99 (2016).

    Article  Google Scholar 

  6. N. B. McKeown and P. M. Budd, Macromolecules, 43, 5163 (2010).

    Article  CAS  Google Scholar 

  7. X. Liu, Y. Xu, and D. Jiang, J. Am. Chem. Soc., 134, 8738 (2012).

    Article  CAS  Google Scholar 

  8. X. Zou, H. Ren, and G. Zhu, Chem. Commun., 49, 3925 (2013).

    Article  CAS  Google Scholar 

  9. A. Sayari and Y. Belmabkhout, J. Am. Chem. Soc., 132, 6312 (2010).

    Article  CAS  Google Scholar 

  10. J. C. Hicks, J. H. Drese, D. J. Fauth, M. L. Gray, G. Qi, and C. W. Jones, J. Am. Chem. Soc., 130, 2902 (2008).

    Article  CAS  Google Scholar 

  11. T. M. McDonald, W. R. Lee, J. A. Mason, B. M. Wiers, C. S. Hong, and J. R. Long, J. Am. Chem. Soc., 134, 7056 (2012).

    Article  CAS  Google Scholar 

  12. S. Y. Lee and S. J. Park, J. Ind. Eng. Chem., 23, 1 (2015).

    Article  Google Scholar 

  13. W. Lu, D. Yuan, D. Zhao, C. I. Schilling, O. Plietzsch, T. Muller, S. Bräse, J. Guenther, J. Blümel, and R. Krishna, Chem. Mater., 22, 5964 (2010).

    Article  CAS  Google Scholar 

  14. C. Shen, H. Yu, and Z. Wang, Chem. Commun., 50, 11238 (2014).

    Article  CAS  Google Scholar 

  15. H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 131, 8875 (2009).

    Article  CAS  Google Scholar 

  16. H. Yu, M. Tian, C. Shen, and Z. Wang, Polym. Chem., 4, 961 (2013).

    Article  CAS  Google Scholar 

  17. S. Ren, R. Dawson, A. Laybourn, J. X. Jiang, Y. Khimyak, D. J. Adams, and A. I. Cooper, Polym. Chem., 3, 928 (2012).

    Article  CAS  Google Scholar 

  18. M. G. Rabbani and H. M. El Kaderi, Chem. Mater., 24, 1511 (2012).

    Article  CAS  Google Scholar 

  19. M. Shunmughanathan, P. Puthiaraj, and K. Pitchumani, Chem-CatChem, 7, 666 (2015).

    CAS  Google Scholar 

  20. G. Li, B. Zhang, J. Yan, and Z. Wang, Macromolecules, 47, 6664 (2014).

    Article  CAS  Google Scholar 

  21. J. H. Drese, S. Choi, S. A. Didas, P. Bollini, M. L. Gray, and C. W. Jones, Micropor. Mesopor. Mater., 151, 231 (2012).

    Article  CAS  Google Scholar 

  22. R. Vaidhyanathan, S. S. Iremonger, K. W. Dawson, and G. K. Shimizu, Chem. Commun., 35, 5230 (2009).

    Article  Google Scholar 

  23. M. Plaza, C. Pevida, A. Arenillas, F. Rubiera, and J. Pis, Fuel, 86, 2204 (2007).

    Article  CAS  Google Scholar 

  24. M. M. Maroto Valer, Z. Tang, and Y. Zhang, Fuel Process. Technol., 86, 1487 (2005).

    Article  Google Scholar 

  25. C. Pevida, M. Plaza, B. Arias, J. Fermoso, F. Rubiera, and J. Pis, Appl. Surf. Sci., 254, 7165 (2008).

    Article  CAS  Google Scholar 

  26. L. Zhao, Z. Bacsik, N. Hedin, W. Wei, Y. Sun, M. Antonietti, and M. M. Titirici, ChemSusChem, 3, 840 (2010).

    Article  CAS  Google Scholar 

  27. G. P. Hao, W. C. Li, D. Qian, and A. H. Lu, Adv. Mater., 22, 853 (2010).

    Article  CAS  Google Scholar 

  28. T. C. Drage, A. Arenillas, K. M. Smith, C. Pevida, S. Piippo, and C. E. Snape, Fuel, 86, 22 (2007).

    Article  CAS  Google Scholar 

  29. M. G. Schwab, B. Fassbender, H. W. Spiess, A. Thomas, X. Feng, and K. Mullen, J. Am. Chem. Soc., 131, 7216 (2009).

    Article  CAS  Google Scholar 

  30. W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, and F. Yan, Energy Environ. Sci., 7, 379, (2014).

    Article  CAS  Google Scholar 

  31. J. Wang and Q. Liu, J. Phys. Chem. C, 111, 7266 (2007).

    Article  CAS  Google Scholar 

  32. Y. Xia, Y. Zhu, and Y. Tang, Carbon, 50, 5543 (2012).

    Article  CAS  Google Scholar 

  33. J. Wang, I. Senkovska, M. Oschatz, M. R. Lohe, L. Borchardt, A. Heerwig, Q. Liu, and S. Kaskel, ACS Appl. Mater. Interfaces, 5, 3160 (2013).

    Article  CAS  Google Scholar 

  34. F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klöck, M. O’Keeffe, and O. M. Yaghi, J. Am. Chem. Soc., 131, 4570 (2009).

    Article  CAS  Google Scholar 

  35. K. S. Sing, Pure Appl. Chem., 57, 603 (1985).

    Article  CAS  Google Scholar 

  36. G. Li, B. Zhang, and Z. Wang, Macromolecules, 49, 2575 (2016).

    Article  CAS  Google Scholar 

  37. Y. J. Heo and S. J. Park, Energy, 91, 142 (2015).

    Article  CAS  Google Scholar 

  38. R. Dawson, D. J. Adams, and A. I. Cooper, Chem. Sci., 2, 1173 (2011).

    Article  CAS  Google Scholar 

  39. R. V. Siriwardane, M. S. Shen, E. P. Fisher, and J. A. Poston, Energy Fuels, 15, 279 (2001).

    Article  CAS  Google Scholar 

  40. A. Wilke and J. Weber, J. Mater. Chem., 21, 5226 (2011).

    Article  CAS  Google Scholar 

  41. V. Presser, J. McDonough, S. H. Yeon, and Y. Gogotsi, Energy Environ. Sci., 4, 3059 (2011).

    Article  CAS  Google Scholar 

  42. G. Yushin, R. Dash, J. Jagiello, J. E. Fischer, and Y. Gogotsi, Adv. Funct. Mater., 16, 2288 (2006).

    Article  CAS  Google Scholar 

  43. L. Y. Meng and S. J. Park, J. Colloid Interface Sci., 352, 498 (2010).

    Article  CAS  Google Scholar 

  44. J. Lu and J. Zhang, J. Mater. Chem. A, 2, 13831 (2014).

    Article  CAS  Google Scholar 

  45. T. Ratvijitvech, R. Dawson, A. Laybourn, Y. Z. Khimyak, D. J. Adams, and A. I. Cooper, Polymer, 55, 321 (2014).

    Article  CAS  Google Scholar 

  46. S. Himeno, T. Komatsu, and S. Fujita, J. Chem. Eng. Data, 50, 369 (2005).

    Article  CAS  Google Scholar 

  47. M. Sevilla and A. B. Fuertes, J. Colloid Interface Sci., 366, 147 (2012).

    Article  CAS  Google Scholar 

  48. M. C. Gutiérrez, D. Carriazo, C. O. Ania, J. B. Parra, M. L. Ferrer, and F. del Monte, Energy Environ. Sci., 4, 3535 (2011).

    Article  Google Scholar 

  49. R. Ullah, M. Atilhan, B. Anaya, S. Al-Muhtaseb, S. Aparicio, H. Patel, D. Thirion, and C. T. Yavuz, ACS Appl. Mater. Interfaces, 8, 20772 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Jin Park.

Additional information

Acknowledgments: This research was supported by The Leading Human Resource Training Program of the Regional Neo Industry through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT, and Future Planning (grant number: NRF-2016H1D5A1909732).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, A., Park, SJ. Influence of nitrogen moieties on CO2 capture by polyaminal-based porous carbon. Macromol. Res. 25, 1035–1042 (2017). https://doi.org/10.1007/s13233-017-5138-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5138-1

Keywords

Navigation