Skip to main content

Advanced Functional Polymer-Based Porous Composites for CO2 Capture

  • Chapter
  • First Online:
Polymer-Based Advanced Functional Materials for Energy and Environmental Applications

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Due to the uncontrolled release of greenhouse gases into the atmosphere through anthropogenic activities, the planet's temperature and natural ecosystem are being adversely affected globally. Fossil-fueled power plants and transportation are the major sources for the release of CO2 into the atmosphere. Carbon capture and sequestration (CCS) is one of the promising alternatives for CO2 mitigation. To capture this CO2, highly selective and high storage capacity adsorbent material is required. Also, the adsorbent should be chemically stable, highly porous, large surface area, minimal energy input, easy to regenerate and low cost. Amine-based technology has long been used for CO2 mitigation but this process is very much energy intensive. Physical sorbents with high CO2 selectivity are available in powder form and cannot be used for real-world applications. There is a need to transform it in some particulate form or one can form a porous framework and that can be easily done using polymers and polymers are known to be mechanically, thermally and chemically very stable. Also, polymers due to the presence of abundant functionalizable sites can be functionalized to make the polymer surface rich in CO2-philic moieties. So, this chapter is focused to highlight various functionalized organic porous polymers and their CO2 uptake capacity, CO2/N2 selectivity, regenerability and also challenges and potential of this kind of materials in gas separation is finally discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BET:

Brunauer-Emmett-Teller

BHMAA:

Bis(o-hydroxyl) maleamic acid

BHMI:

Bis(o-hydroxyl)-maleimides

BisADA:

Bisphenol A type dianhydride

CCS:

Carbon capture and sequestration

CNTs:

Carbon nano tubes

DAC:

Direct air capture

DBN:

1,5-Diazabicyclo [4.3.0]-non-5-ene

Di:

Diffusion coefficient of gas CO2

Dj:

Diffusion coefficient of another gas (N2, H2 or CH4)

FFV:

Fractional free volume

GHG:

Greenhouse gas

GO:

Graphene oxide

GPU:

Gas Permeation Unit

MBB:

Molecular building blocks

MOFs:

Metal organic frameworks

OPDA:

4,4′-oxydiphthalic anhydride

PBO:

Polybenzoxazole

PBI:

Polybenzimidazole

PBZ:

Polybenzothiazole

PEO:

Poly (ethylene oxide)

Pi:

Permeability of species i

PI:

Polyimides

POF:

Porous organic framework

POPs:

Porous organic polymers

Si:

Solubility coefficient of gas component CO2

Sj:

Solubility coefficient of another gas (N2, H2 or CH4)

SNWs:

Schiff base networks

TFN:

Thin film nanocomposite

Tg:

Glass transition temperation

TR:

Thermally rearranged

αij:

Ideal selectivity of species i over j

References

  • Alessandro DMD, Smit B, Long R (2010) Carbon dioxide capture carbon dioxide capture: prospects for new materials angewandte. 6058–6082. https://doi.org/10.1002/anie.201000431

  • Alghunaimi F, Ghanem B, Wang Y, Salinas O, Alaslai N (2017). Synthesis and gas permeation properties of a novel thermally-rearranged Polybenzoxazole made from an intrinsically microporous hydroxyl- functionalized Triptycene-based polyimide precursor. https://doi.org/10.1016/j.polymer.2017.06.006

    Article  Google Scholar 

  • Alkordi MH, Rana R, Youssef S, Abdul-Hamid E, Youssef B (2015) Poly-functional porous-organic polymers to access functionality—CO2 sorption energetics relationships table of contents artwork here functionality on the observed Qst for CO2

    Google Scholar 

  • AlQahtani S, Mezghani K (2018) Thermally rearranged polypyrrolone membranes for high-pressure natural gas separation applications. J Nat Gas Sci Eng 51:262–270. https://doi.org/10.1016/j.jngse.2018.01.011

    Article  CAS  Google Scholar 

  • Arab P, Rabbani G, Sekizkardes K, Islamoǧlu T, El-Kaderi M (2014) Copper(I)-catalyzed synthesis of nanoporous azo-linked polymers: impact of textural properties on gas storage and selective carbon dioxide capture. Chem Mater 26(3):1385–1392. https://doi.org/10.1021/cm403161e

    Article  CAS  Google Scholar 

  • Arruda T, Heon M, Presser V, HillesheimP, Dai S, Gogotsi Y, Kalinin V, Balke N (2013). Environmental science In situ tracking of the nanoscale expansion of porous carbon electrodes, 225–231. https://doi.org/10.1039/c2ee23707e

  • Bae Y, Snurr R (2020). Minireviews development and evaluation of porous materials for carbon dioxide separation and capture, 11586–11596. https://doi.org/10.1002/anie.201101891

  • Bara J, Gabriel C, Lessmann S, Carlisle T, Finotello A, Gin D, Noble R (2007) Enhanced CO2 separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids. Ind Eng Chem Res 46(16):5380–5386. https://doi.org/10.1021/ie070437g

    Article  CAS  Google Scholar 

  • Bhavsar R, Mitra T, Dave J, Cooper A, Budd P, Cooper A, Budd P (2018). Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation. https://doi.org/10.1016/j.memsci.2018.07.089

  • Bhown A, Freeman B (2020). Analysis and status of post-combustion carbon dioxide capture technologies, 8624–8632. https://doi.org/10.1021/es104291d

  • Brunetti A, Cersosimo M, Dong G, Woo K, Lee J, Kim J, Lee Y, Drioli E, Barbieri G (2016) In situ restoring of aged thermally rearranged gas separation membranes. J Membr Sci 520:671–678. https://doi.org/10.1016/j.memsci.2016.07.030

    Article  CAS  Google Scholar 

  • Bryjak M, Wolska J, Siekierka A, Kujawski J (2015). Stimuli responsive membranes in separation processes- short review. Copernican Lett 6(4). https://doi.org/10.12775/cl.2015.001

  • Budd P, Ghanem B, Makhseed S, Mckeown N, Msayib K, Tattershall E (2004) Polymers of intrinsic microporosity ( PIMs ): robust , solution-processable , organic nanoporous materials, 230–231

    Google Scholar 

  • Budd P, Mckeown N, Ghanem B, Msayib K, Fritsch D, Starannikova L, Belov N, Sanfirova O, Yampolskii Y, Shantarovich V (2008) Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1 325, 851–860. https://doi.org/10.1016/j.memsci.2008.09.010

  • Cersosimo M, Brunetti A, Drioli E, Fiorino F, Dong G, Woo K, Lee J, Lee Y, Barbieri G (2015) Separation of CO2 from humidified ternary gas mixtures using thermally rearranged polymeric membranes. J Membr Sci 492:257–262. https://doi.org/10.1016/j.memsci.2015.05.072

    Article  CAS  Google Scholar 

  • Chaffee A & Verpoort F (2007). CO2 capture by adsorption: materials and process development. https://doi.org/10.1016/S1750-5836(07)00031-X

  • Chaterjee S, Krupadam R (2018) Amino acid-imprinted polymers as highly selective ­ CO2 capture materials. Environ Chem Lett 0123456789:75–80. https://doi.org/10.1007/s10311-018-0774-z

  • Chen Q, Liu D, Zhu J, Han B (2014). Mesoporous conjugated polycarbazole with high porosity via structure tuning.

    Google Scholar 

  • Chen Y, Sun Y, Yang Z, Lu X, Ji X (2020). CO2 separation using a hybrid choline-2-pyrrolidine-carboxylic acid/polyethylene glycol/water absorbent. Appl Energy 257, 113962. https://doi.org/10.1016/j.apenergy.2019.113962

  • Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G (2013) Polyethylenimine-impregnated resin for high CO2 adsorption:an efficient adsorbent for CO2 capture from simulated flue gas and ambient air

    Google Scholar 

  • Choi S, Drese J, Jones C (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources, 796–854. https://doi.org/10.1002/cssc.200900036

  • Christensen C, Egeblad K, Pe J, Christensen C, Groen J (2008). Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. July 2015. https://doi.org/10.1039/b809030k

  • Chua M, Xiao Y, Chung T (2013) Modifying the molecular structure and gas separation performance of thermally labile polyimide-based membranes for enhanced natural gas purification. Chem Eng Sci 104:1056–1064. https://doi.org/10.1016/j.ces.2013.10.034

    Article  CAS  Google Scholar 

  • Co A, El-kaderi H, Furukawa H, Hunt J, Yaghi O (2007) Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks, 12914–12915

    Google Scholar 

  • Cong H, Yu B (2010). Aminosilane Cross-linked PEG/PEPEG/PPEPG membranes for CO2/N2 and CO2/H2 separation, 9363–9369

    Google Scholar 

  • Côté A (2007) Porous, crystalline , covalent organic frameworks 1166(2005). https://doi.org/10.1126/science.1120411

  • Cussler E (1989) On the limits of facilitated diffusion. 43:149–164

    Google Scholar 

  • Darunte L, Oetomo A, Walton K, Sholl D, Jones C (2016). Direct air capture of CO2 using amine functionalized MIL-101 (Cr) direct air capture of CO2 using amine functionalized MIL-101 (Cr) 101. https://doi.org/10.1021/acssuschemeng.6b01692

  • Didas S, Choi S, Chaikittisilp W, Jones C (2015). Amine−Oxide hybrid materials for CO2 capture from ambient air. https://doi.org/10.1021/acs.accounts.5b00284

  • Dillon E, Andreoli E, Cullum L, Andrew R (2015) Polyethyleneimine functionalised nanocarbons for the efficient adsorption ofcarbon dioxide with a low temperature of regeneration. May, 37–41. https://doi.org/10.1080/17458080.2014.894256

  • Ding S, Gao J, Zhang Y, Song W, Su C, Wang W (2012) Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-miyaura coupling reaction, 6–9

    Google Scholar 

  • Do Y, Lee W, Seong J, Kim J, Wang H, Doherty C, Hill A, Lee Y (2016) Thermally rearranged (TR) bismaleimide-based network polymers for gas separation membranes. Chem Commun 52(93):13556–13559. https://doi.org/10.1039/C6CC06609G

    Article  CAS  Google Scholar 

  • Dong G, Li H, Chen V (2013) Challenges and opportunities for mixed-matrix membranes for gas separation. https://doi.org/10.1039/C3TA00927K

  • Drage T, Arenillas A, Smith K, Snape C (2008) Microporous and Mesoporous Materials Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous Mesoporous Mater 116(1–3):504–512. https://doi.org/10.1016/j.micromeso.2008.05.009

    Article  CAS  Google Scholar 

  • Dzubak A, Lin L, Kim J, Swisher J, Poloni R, Maximoff S, Smit B, Gagliardi L (2012) Ab initio carbon capture in open-site metal-organic frameworks. Nat Chem 4(10):810–816. https://doi.org/10.1038/nchem.1432

    Article  CAS  Google Scholar 

  • Eames I, Kale P (1998). A review of adsorbents and adsorbates in solid—vapour adsorption heat pump systems

    Google Scholar 

  • Emmett P (1936) Gases in multimolecular layers 407(1)

    Google Scholar 

  • Favvas E, Heliopoulos N, Karousos D, Devlin E, Papageorgiou S, Petridis D, Karanikolos G (2019) Mixed matrix polymeric and carbon hollow fiber membranes with magnetic iron-based nanoparticles and their application in gas mixture separation. Mater Chem Phys 223(August 2018), 220–229. https://doi.org/10.1016/j.matchemphys.2018.10.047

  • Feng X, Chen L, Honsho Y, Saengsawang O, Liu L, Wang L (2012) An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor-acceptor ordering, 3026–3031. https://doi.org/10.1002/adma.201201185

  • Freeman BD, Hill AJ (1999) Free volume and transport properties of barrier and membrane polymers, 306–325

    Google Scholar 

  • Furukawa H, Yaghi O (2009). Storage of hydrogen , methane , and carbon dioxide in highly porous covalent organic frameworks for clean energy applications, 8875–8883

    Google Scholar 

  • Ghanbari D (2010). Modification of ABS membrane by PEG for capturing carbon dioxide from CO2/N2 streams modification of ABS membrane by PEG for capturing carbon dioxide from CO2/N2 streams. https://doi.org/10.1080/01496391003705631

  • Goddard J, Schultz J (1974) Facilitated transport via carrier- mediated diffusion in membranes 20(4):625–645

    Google Scholar 

  • Guo R, Sanders D, Smith Z, Freeman B, Paul D, Mcgrath J (2013) Synthesis and characterization of thermally rearranged (TR) polymers: effect of glass transition temperature of aromatic poly (hydroxyimide) precursors on TR process and gas permeation properties, 6063–6072. https://doi.org/10.1039/c3ta10261k

  • Han S, Jose L, Willam A (2009) Recent advances on simulation and theory of hydrogen storage in metal organic frameworks and covalent organic frameworks (5). https://doi.org/10.1039/b802430h

  • Han S, Misdan N, Kim S, Doherty C, Hill A, Lee Y (2010) Thermally rearranged (TR) polybenzoxazole: effects of diverse imidization routes on physical properties and gas transport behaviors, 7657–7667. https://doi.org/10.1021/ma101549z

  • Hao B, Li W, Qian D, Lu A (2010) Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture, 853–857. https://doi.org/10.1002/adma.200903765

  • Hoon S, Eun J, Lee K, Bum H, Moo Y (2010) Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. J Membr Sci 357(1–2):143–151. https://doi.org/10.1016/j.memsci.2010.04.013

    Article  CAS  Google Scholar 

  • Hunt J, Doonan C, Levangie J, Co A (2008) reticular synthesis of covalent organic borosilicate frameworks, 11872–11873

    Google Scholar 

  • Iqbal N, Wang X, Yu J, Ding B (2017) Robust and flexible carbon nanofibers doped with amine functionalized carbon nanotubes for efficient CO2 capture 1600028:1–8. https://doi.org/10.1002/adsu.201600028

  • Iqbal N, Wang X, Yu J, Jabeen N, Ullah H, Ding B (2016). In situ synthesis of carbon nanotube doped metal– organic frameworks for CO2 capture, 6(August), 4382–4386. https://doi.org/10.1039/C5RA25465E

  • Jin Y, Voss B, Jin A, Long H, Noble R, Zhang W (2011a) Highly CO2-selective organic molecular cages: what determines the CO2 selectivity, 6650–6658

    Google Scholar 

  • Jin Y, Voss B, Mccaffrey R, Baggett C, Noble R (2011b) Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs), 1–7

    Google Scholar 

  • Jue M, Breedveld V, Lively R (2017) Defect-free PIM-1 hollow fiber membranes. J Membr Sci 530:33–41. https://doi.org/10.1016/j.memsci.2017.02.012

    Article  CAS  Google Scholar 

  • Jue M, Mckay C, Mccool B, Finn M, Lively R (2015) Effect of nonsolvent treatments on the microstructure of PIM‑1. https://doi.org/10.1021/acs.macromol.5b01507

  • Karanikolos G (2020). Current context and future directions, 1–30.

    Google Scholar 

  • Karl M, Wright R, Berglen T, Denby B (2011) International Journal of Greenhouse Gas Control Worst case scenario study to assess the environmental impact of amine emissions from a CO2 capture plant. Int J Greenhouse Gas Control 5(3):439–447. https://doi.org/10.1016/j.ijggc.2010.11.001

    Article  CAS  Google Scholar 

  • Kim S, Hoon S, Moo Y (2012) Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture. J Membr Sci 403–404:169–178. https://doi.org/10.1016/j.memsci.2012.02.041

    Article  CAS  Google Scholar 

  • Kim S, Jin H, Moo, (2013) Sorption and transport of small gas molecules in thermally rearranged (TR) polybenzoxazole membranes based on 2,2-bis(3-amino-4- hexa fluoroisopropylidene diphthalic anhydride (6FDA). J Membr Sci 441:1–8. https://doi.org/10.1016/j.memsci.2013.03.054

  • Kim Y, Jang H, Kim J, Lee J (2017) Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network. Appl Energy 185:916–928. https://doi.org/10.1016/j.apenergy.2016.10.012

    Article  CAS  Google Scholar 

  • Konstas K, Taylor J, Thornton A, Doherty C, Lim W, Bastow T,Kennedy D, Wood C, Cox B, Hill J, Hill A, Hill R (2012) Lithiated porous aromatic frameworks with exceptional gas storage capacity

    Google Scholar 

  • Kontos A, Likodimos V, Veziri C, Kouvelos E (2014) CO2 captured in zeolitic imidazolate frameworks: raman spectroscopic analysis of uptake and host—guest interactions, 1–8. https://doi.org/10.1002/cssc.201301323

  • Kortunov P, Siskin M, Baugh L, Calabro D (2015). In Situ nuclear magnetic resonance mechanistic studies of carbon dioxide reactions with liquid amines in aqueous systems: new insights on carbon capture reaction pathways. https://doi.org/10.1021/acs.energyfuels.5b00850

    Article  Google Scholar 

  • Labropoulos A, Veziri C, Kapsi M, Pilatos G, Likodimos V, Tsapatsis M, Kanellopoulos N, Romanos G, Karanikolos G (2015) Carbon Nanotube Selective Membranes with Sub-Nanometer. Vertically aligned pores, and enhanced gas transport properties carbon nanotube selective membranes with sub-nanometer, vertically aligned pores, and enhanced gas transport properties. https://doi.org/10.1021/acs.chemmater.5b01946

    Article  Google Scholar 

  • Lee J, Lee J, Jo H, Seong J, Kim J, Lee W, Moon J, Lee D, Oh W, Yeo J, Lee Y (2017) Wet CO2/N2 permeation through a crosslinked thermally rearranged poly(benzoxazole-co-imide) (XTR-PBOI) hollow fiber membrane module for CO2 capture. J Membr Sci 539(May):412–420. https://doi.org/10.1016/j.memsci.2017.06.032

    Article  CAS  Google Scholar 

  • Li F, Xiao Y, Ong Y,Chung T (2012) UV-rearranged PIM-1 polymeric membranes for advanced hydrogen purifi cation and production, 1–11. https://doi.org/10.1002/aenm.201200296

  • Li G, Wang Z (2013). microporous polyimides with uniform pores for adsorption and separation of CO2 gas and organic vapors, 2–10

    Google Scholar 

  • Li G, Liu Q, Xia B, Huang J, Li S, Guan Y, Zhou H, Liao B, Zhou Z, Liu B (2017) Synthesis of stable metal-containing porous organic polymers for gas storage. Eur Polymer J 91:242–247. https://doi.org/10.1016/j.eurpolymj.2017.03.014

    Article  CAS  Google Scholar 

  • Li J, Sculley J, Zhou H (2012) Metal-organic frameworks for separations. Chem Rev 112(2):869–932. https://doi.org/10.1021/cr200190s

    Article  CAS  Google Scholar 

  • Li J, Yu J, L W, Sun L, Sculley J, Balbuena P, (2013) single-molecule traps for CO2 selective adsorption. Nat Commun 4:1538. https://doi.org/10.1038/ncomms2552

  • Li K, Jiang J, Yan F, Tian S, Chen X (2014) The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents. Appl Energy 136(December):750–755. https://doi.org/10.1016/j.apenergy.2014.09.057

    Article  CAS  Google Scholar 

  • Li S, Jin H, Hoon S, Hoon C, Kim S, Budd P, Moo Y (2013) Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation. J Membr Sci 434:137–147. https://doi.org/10.1016/j.memsci.2013.01.011

    Article  CAS  Google Scholar 

  • Li F, Xiao Y, Chung T (2012) High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Procedia Eng 44:498–500. https://doi.org/10.1016/j.proeng.2012.08.464

    Article  Google Scholar 

  • Li Y, You Y, Dai M, Chen X, Yang J (2020) Physical properties and CO2 absorption capacity of propylene Carbonate + Poly(propylene glycol) Monobutyl Ether systems. J Chem Eng Data 65(2):896–905. https://doi.org/10.1021/acs.jced.9b01081

    Article  CAS  Google Scholar 

  • Liao C, Liang Z, Liu B, Chen H, Wang X, Li H (2020) Phenylamino-, Phenoxy-, and Benzenesulfenyl-linked covalent Triazine frameworks for CO2 capture. ACS Appl Nano Mater 3(3):2889–2898. https://doi.org/10.1021/acsanm.0c00155

    Article  CAS  Google Scholar 

  • Liebl M, Senker J (2013) Microporous functionalized triazine-based polyimides with high CO2 capture capacity. https://doi.org/10.1021/cm4000894

  • Liu, Jiangtao, Xiao Y, Liao K, Chung T (2017) Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin. J Membrane Sci 523:92–102. https://doi.org/10.1016/j.memsci.2016.10.001

  • Liu, Junyi, Park H, Lin H (2016) High-performance polymers for membrane CO2/N2 separation high-performance polymers for membrane CO2/N2 separation. https://doi.org/10.1002/chem.201603002

  • Liu L, Li P, Zhu L, Zou R, Zhao Y (2013) Microporous polymelamine network for highly selective CO2 adsorption. Polymer 54(2):596–600. https://doi.org/10.1016/j.polymer.2012.12.015

    Article  CAS  Google Scholar 

  • Liu L, Wang X, Zhang Q, Li Q, Zhao Y (2013) Distinct interpenetrated metal–organic frameworks constructed from crown ether-based strut analogue 13:841–844. https://doi.org/10.1039/c2ce26401c

  • Liu L, Zhang J (1833). Triptycene-based microporous polymer with pending tetrazole moieties for CO2-capture application, 1833–1837

    Google Scholar 

  • Liu Q, Borjigin H, Paul D, Riffle J (2016) Gas permeation properties of thermally rearranged (TR ) isomers and their aromatic polyimide precursors

    Google Scholar 

  • Liu Q, Paul D, Freeman B (2015) Gas permeation and mechanical properties of thermally rearranged (TR) copolyimides

    Google Scholar 

  • Luo J, Zhong Z (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy & Environmental Review January. https://doi.org/10.1039/c0ee00064g

    Article  Google Scholar 

  • Luo Y, Li B, Wang W, Wu K, Tan B (2012) Hypercrosslinked aromatic heterocyclic microporous polymers : a new class of highly selective CO2 capturing materials, 1–5. https://doi.org/10.1002/adma.201202447

  • Olivares-Marín M, Maroto-Valer M (2012) Development of adsorbents for CO2 capture from waste materials 35:20–35. https://doi.org/10.1002/ghg

  • Man K, Yu K, Curcic I, Gabriel J, Chi S, Tsang E (2008) Recent advances in CO2 capture and utilization, 893–899. https://doi.org/10.1002/cssc.200800169

  • Mason R, Maynard-Atem L, Al-Harbi M, Budd M, Bernardo P, Bazzarelli F, Clarizia G, Jansen C (2011) Polymer of intrinsic microporosity incorporating thioamide functionality: properties and gas trasport properties, pp 1–7

    Google Scholar 

  • Mathai A, Kumar K, Singh S, Karanikolos G (2020). Performance enhancement of CO2 capture adsorbents by UV treatment : The case of self-supported graphene oxide foam. Chem Eng J 386:124022. https://doi.org/10.1016/j.cej.2020.124022

  • Mcdonald T, Akhtar R, Lau C, Ratvijitvech T, Cheng G, Clowes R, Adams D, Hasell T, Cooper A (2015) Using intermolecular interactions to crosslink PIM-1 and modify its gas sorption properties. J Mater Chem A 4855–4864.https://doi.org/10.1039/C4TA06070A

  • Mckeown N, Budd P (2010) Exploitation of intrinsic microporosity in polymer-based materials, 5163–5176. https://doi.org/10.1021/ma1006396

  • Mckeown N, Gahnem B, Msayib K, Budd P, Tattershall C, Mahmood K, Tan S, Book D, Langmi H, Walton A (2006) Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity, 1804–1807. https://doi.org/10.1002/anie.200504241

  • Meth S, Goeppert A, Prakash G, Olah G (2012) Silica nanoparticles as supports for regenerable CO2 sorbents

    Google Scholar 

  • Mikkelsen M, Jørgensen M, Krebs F (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide, 43–81.https://doi.org/10.1039/b912904a

  • Millward A, Yaghi O (2005) Metal—organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature metal—organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. https://doi.org/10.1021/ja0570032

  • Mittal N, Samanta A, Sarkar P, Gupta R (2015) Postcombustion CO2 capture using solid adsorbent, 207–220. https://doi.org/10.1002/ese3.64

  • Monazam E, Spenik J, Shadle L (2013) Fluid bed adsorption of carbon dioxide on immobilized polyethylenimine (PEI): kinetic analysis and breakthrough behavior. Chem Eng J 223:795–805. https://doi.org/10.1016/j.cej.2013.02.041

    Article  CAS  Google Scholar 

  • Moo Y (2016) Thermally rearranged (TR) bismaleimide-based network polymers for gas separation membranes. Chem Commun 52(93):13556–13559. https://doi.org/10.1039/C6CC06609G

    Article  CAS  Google Scholar 

  • Ng S, Jawad Z, Tan P, Chin B, Lee R (2020) Influence of polymer blending of cellulose acetate butyrate for CO2/N2 separation. J Phys Sci 31(1):69–84. https://doi.org/10.21315/JPS2020.31.1.5

  • Nielsen C, Weller C, Nielsen C (2012) Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS), 6684–6704. https://doi.org/10.1039/c2cs35059a

  • Noked M, Avraham E, Soffer A, Aurbach D (2009). The Rate-determining step of electroadsorption processes into nanoporous carbon electrodes related to water desalination, 21319–21327

    Google Scholar 

  • Oschatz M, Leistner M, Nickel W, Kaskel S (2015). Advanced structural analysis of Nanoporous materials by thermal response measurements. https://doi.org/10.1021/acs.langmuir.5b00490

    Article  Google Scholar 

  • Pan Y, Xue M, Chen M, Fang Q, Zhu L (2016). Inorganic chemistry frontiers ZIF-derived in situ nitrogen decorated porous. https://doi.org/10.1039/c6qi00158k

    Article  Google Scholar 

  • Pandey A, Dhingra D, Pandey S (2019) Can common liquid polymers and surfactants capture CO2? J Mol Liq 277:594–605. https://doi.org/10.1016/j.molliq.2018.12.121

    Article  CAS  Google Scholar 

  • Park H, Lee Y, Hill A, Service NH, Freeman BD (2007) Polymers with cavities tuned for fast selective transport of small molecules and ions polymers with cavities tuned for fast selective transport of small molecules and ions. https://doi.org/10.1126/science.1146744

  • Perdikaki AV, Labropoulos AI, Siranidi E, Kanellopoulos N, Boukos N, Falaras P, Karanikolos N, Romanos GE (2015) Efficient CO oxidation in an ionic liquid-modified , Au nanoparticle-loaded membrane contactor. Chem Eng J. https://doi.org/10.1016/j.cej.2015.11.111

  • Rabbani M, Kassab RM, Jackson K, El-kaderi HM (2011) High CO2 Uptake and selectivity by triptycene-derived benzimidazole-linked polymers. https://doi.org/10.1039/c2cc16986j

  • Rao AB, Rubin ES (2006) Identifying cost-effective CO2 control levels for amine-based CO2 capture systems, 2421–2429

    Google Scholar 

  • Robertson GP (2011) Polymer nanosieve membranes for CO2-capture applications. https://doi.org/10.1038/nmat2989

  • Robeson LM (2008) The upper bound revisited. 320:390–400. https://doi.org/10.1016/j.memsci.2008.04.030

    Article  CAS  Google Scholar 

  • Rochelle GT (2009) Amine scrubbing for CO2 capture, 1652. https://doi.org/10.1126/science.1176731

  • Sakpal T, Kumar A, Kamble S, Kumar R (2012) Carbon dioxide capture using amine functionalized silica gel. 51:1214–1222

    Google Scholar 

  • Sakwa-novak MA, Tan S, Jones CW (2015) Role of additives in composite PEI/Oxide CO2 adsorbents: enhancement in the amine efficiency of supported PEI by PEG in CO2 capture from simulated ambient air. https://doi.org/10.1021/acsami.5b07545

  • Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R (2012) Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res 51(4):1438–1463. https://doi.org/10.1021/ie200686q

    Article  CAS  Google Scholar 

  • Satilmis B, Lan M, Fuoco A, Rizzuto C, Tocci E, Bernardo P, Clarizia G, Esposito E, Monteleone M, Dendisová M, Friess K, Budd P, Jansen JC (2018) Temperature and pressure dependence of gas permeation in amine-modified. 555(January):483–496. https://doi.org/10.1016/j.memsci.2018.03.039

    Article  CAS  Google Scholar 

  • Sayari A, Belmabkhout Y, Serna-guerrero R (2011) Flue gas treatment via CO2 adsorption. Chem Eng J 171(3):760–774. https://doi.org/10.1016/j.cej.2011.02.007

    Article  CAS  Google Scholar 

  • Scholes CA, Dong G, Kim JS, Jo HJ, Lee J, Lee YM (2017) Permeation and separation of SO2, H2S and CO2 through thermally rearranged (TR) polymeric membranes. Sep Purif Technol 179:449–454. https://doi.org/10.1016/j.seppur.2016.12.039

    Article  CAS  Google Scholar 

  • Schwab MG, Fassbender B, Spiess HW, Thomas A (2009) Catalyst-free preparation of melamine-based microporous polymer networks through schiff base chemistry, 7216–7217

    Google Scholar 

  • Sehaqui H, Becatinni V, Steinfeld A, Zimmermann T, Tingaut P (2015). Supplementary information: fast and reversible direct CO2 capture from air onto all-polymer Nanofibrillated cellulose—Polyethyleneimine foams

    Google Scholar 

  • Serhan M, Sprowls M, Jackemeyer D, Long M, Perez ID, Maret W, Tao N, Forzani E (2019) Total iron measurement in human serum with a smartphone. AIChE annual meeting, conference proceedings, 2019-Novem, 1–3. https://doi.org/10.1039/x0xx00000x

  • Seul-yi Q, Park S (2014) A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2014.09.001

    Article  Google Scholar 

  • Shamsipur H, Dawood BA, Budd PM, Bernardo P, Clarizia G, Jansen JC (2014) Thermally rearrangeable PIM-Polyimides for gas separation membranes

    Google Scholar 

  • Shen X, Du H, Mullins RH, Kommalapati RR (2017). Polyethylenimine applications in carbon dioxide capture and separation : from theoretical study to experimental work, 822–833. https://doi.org/10.1002/ente.201600694

  • Shi X, Xiao H, Azarabadi H, Song J, Wu X, Chen X, Lackner KS (2019). Sorbents for direct Capture of CO2 from ambient air sorbents for the direct capture of CO2 from ambient air angewandte. https://doi.org/10.1002/anie.201906756

  • Smith ZP, Hernández G, Gleason KL, Anand A, Doherty CM, Konstas K, Alvarez C, Hill AJ, Lozano AE, Paul DR, Freeman BD (2015) Effect of polymer structure on gas transport properties of selected aromatic polyimides, polyamides and TR polymers. J Membr Sci 493(512):766–781. https://doi.org/10.1016/j.memsci.2015.06.032

    Article  CAS  Google Scholar 

  • Swaidan R, Ghanem B, Pinnau I (2015). Fine-tuned intrinsically Ultramicroporous polymers Rede Fi Ne the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. https://doi.org/10.1021/acsmacrolett.5b00512

    Article  Google Scholar 

  • Swaidan R, Ma X, Litwiller E, Pinnau I (2013) High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity. J Membr Sci 447:387–394. https://doi.org/10.1016/j.memsci.2013.07.057

    Article  CAS  Google Scholar 

  • Tanthana J, Chuang SSC (2010) In Situ infrared study of the role of peg in stabilizing silica-supported amines for CO2 capture 3906:957–964. https://doi.org/10.1002/cssc.201000090

  • Taylor P, Sarkar S, Basak P, Adhikari B, Sarkar S, Basak P, Adhikari B (2011) Polymer-plastics technology and engineering biodegradation of polyethylene glycol-based polyether urethanes biodegradation of polyethylene glycol-based polyether urethanes, 37–41. https://doi.org/10.1080/03602559.2010.531415

  • Tiwari RR, Smith ZP, Lin H, Freeman BD, Paul DR (2015) Gas permeation in thin films of “high free-volume” glassy per fluoropolymers: part II. CO2 plasticization and sorption. Polymer 61:1–14. https://doi.org/10.1016/j.polymer.2014.12.008

    Article  CAS  Google Scholar 

  • To JWF, He J, Mei J, Haghpanah R, Chen Z, Kurosawa T, Chen S, Bae W, Pan L, Tok B, Wilcox J, Bao Z (2016) Hierarchical N ‑ doped carbon as CO2 adsorbent with High CO2 selectivity from rationally designed polypyrrole precursor. https://doi.org/10.1021/jacs.5b11955

  • Tzialla O, Veziri CM, Papatryfon X, Beltsios K, Iliev B, Adamova G, Schubert TJS, Kroon MC, Casal MF, Zubeir LF, Romanos GE, Karanikolos G (2013). Zeolite imidazolate framework—ionic liquid hybrid membranes for highly selective CO2 separation zeolite imidazolate framework—ionic liquid hybrid membranes for highly selective CO2 separation. https://doi.org/10.1021/jp4051287

  • Vaidhyanathan R, Vaidhyanathan R, Iremonger SS, Shimizu GKH (2014). Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. https://doi.org/10.1126/science.1194237

  • Wang J, Heerwig A, Lohe M, Oschatz M, Borchardt L, Kaskel S (2012). Fungi-based porous carbons for CO2 adsorption and separation, 1–11

    Google Scholar 

  • Wang J, Chen H, Zhou H, Liu X, Qiao W, Long D, Ling L (2013) Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons. J Environ Sci 25(1):124–132. https://doi.org/10.1016/S1001-0742(12)60011-4

    Article  CAS  Google Scholar 

  • Wang S, Liu Y, Huang S, Wu H, L Y, Tian Z, (2014) Pebax—PEG—MWCNT hybrid membranes with enhanced CO2 capture properties. J Membr Sci 460:62–70. https://doi.org/10.1016/j.memsci.2014.02.036

  • Wang T (2014) Preparation and characterization of triptycene-based microporous poly(benzimidazole) networks. https://doi.org/10.1039/C2JM31187A

  • Wang Z, Yuan S, Mason A, Reprogle B, Liu D, Yu L (2012). Nanoporous porphyrin polymers for gas storage and separation

    Google Scholar 

  • Wiesmet V, Weidner E, Behme S, Sadowski G, Arlt W (2000) Measurement and modelling of high-pressure phase equilibria in the systems polyethyleneglycol ( PEG )– propane , PEG—nitrogen and PEG—carbon dioxide 17:1–12

    Google Scholar 

  • Wijesiri RP, Knowles GP, Yeasmin H, Hoadley AFA, Cha AL (2019) CO2 capture from air using pelletized polyethylenimine impregnated MCF silica. https://doi.org/10.1021/acs.iecr.8b04973

  • Wilmer CE, Farha OK, Bae Y, Hupp JT, Snurr RQ (2012) Structure-property relationships of porous materials for carbon dioxide separation and capture, 1–9

    Google Scholar 

  • Xian S, Wu Y, Wu J, Wang X, Xiao J (2015) Enhanced dynamic CO2 adsorption capacity and CO2/CH4 selectivity on polyethylenimine-impregnated UiO-66. https://doi.org/10.1021/acs.iecr.5b03517

  • Xiang Z, Cao D (2000) Synthesis of luminescent covalent—organic polymers for detecting nitroaromatic explosives and small organic molecules, 1–7. https://doi.org/10.1002/marc.201100865

  • Yan C, Han B (2012) Microporous polycarbazole with high specific surface area for gas storage and separation

    Google Scholar 

  • Yang RT (1997) Gas separation by adsorption processes

    Google Scholar 

  • Ye L, Wang L, Jie X, Yu C, Kang G, Cao Y (2019) The evolution of free volume and gas transport properties for the thermal rearrangement of poly(hydroxyamide-co-amide)s membranes. J Membr Sci 573:21–35. https://doi.org/10.1016/j.memsci.2018.11.029

    Article  CAS  Google Scholar 

  • Yuan S, Dorney B, White D, Kirklin S, Zapol P, Yu L, Liu D (2010) Microporous polyphenylenes with tunable pore size for hydrogen storage i(c):1–12

    Google Scholar 

  • Zainab G, Iqbal N, Ahmed A, Huang C (2017) Free-standing, spider-web-like polyamide/carbon nanotube composite nano fi brous membrane impregnated with polyethyleneimine for CO2 capture. Compos Commun 6(August):41–47. https://doi.org/10.1016/j.coco.2017.09.001

    Article  Google Scholar 

  • Zeng C, Tao J, Lai J, Chung T (2018) High-performance multiple-layer PIM composite hollow fiber membranes for gas separation. J Membr Sci 563(May):93–106. https://doi.org/10.1016/j.memsci.2018.05.045

    Article  CAS  Google Scholar 

  • Zhang G, Wei G, Liu Z, Oliver SRJ, Fei H, Zhang G, Wei G, Liu Z, Oliver SRJ, Fei H (2016). A robust sulfonate-based metal-organic framework with permanent porosity for efficient CO2 capture and conversion a robust sulfonate-based metal-organic framework with perma- nent porosity for efficient CO2 capture and conversion. https://doi.org/10.1021/acs.chemmater.6b02511

  • Zhang, Yonglai, Wei S, Liu F, Du Y, Liu S, Ji Y, Yokoi T, Tatsumi T, Xiao F (2009) Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds. https://doi.org/10.1016/j.nantod.2009.02.010

  • Zhang, Yugen, Riduan SN (2012) Functional porous organic polymers for heterogeneous catalysis, 2083–2094. https://doi.org/10.1039/c1cs15227k

  • Zhao Y, Ho WSW (2012) Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transport. J Membr Sci 415–416:132–138. https://doi.org/10.1016/j.memsci.2012.04.044

    Article  CAS  Google Scholar 

  • Zhao Y, Liu X, Han Y (2015) Microporous carbonaceous adsorbents for CO2 separation via selective adsorption, 30310–30330. https://doi.org/10.1039/C5RA00569H

  • Zhao Y, Liu X, Yao KX, Zhao L, Han Y (2012) Superior capture of CO2 achieved by introducing extra-framework cations into N‑doped microporous carbon

    Google Scholar 

  • Zwaneveld N (2008). Organized formation of 2D extended covalent organic frameworks at surfaces organized formation of 2D extended covalent organic frameworks at. 10–12. https://doi.org/10.1021/ja800906f

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaghasia, R., Saini, B., Dey, A. (2022). Advanced Functional Polymer-Based Porous Composites for CO2 Capture. In: Subramani, N.K., Nataraj, S.K., Patel, C., Shivanna, S. (eds) Polymer-Based Advanced Functional Materials for Energy and Environmental Applications. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-8755-6_8

Download citation

Publish with us

Policies and ethics