Skip to main content
Log in

Amide-based oligomers for low-viscosity composites of polyamide 66

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Melt viscosity control of polyamides is an important issue concerning polymer processing and quality composites which are directly influenced by the melt viscosity in extrusion and injection molding processes. In this work, a series of linear and cyclic PA6 (nylon6), PA46 (nylon46), and PA66 (nylon66)-based amide oligomers consisting of <10 repeat units are prepared. The melt viscosities of the composites of each oligomer in a PA66 matrix are investigated. The linear oligomers have a larger viscosity-decreasing effect than cyclic oligomers containing the same repeat unit. Linear PA6 and PA46-based oligomers show a greater melt viscosity reduction than PA66-based ones, especially in PA6-based linear oligomer (A6-L), which shows a reduction of >30%. This result suggests that proper hydrogen bonding mismatching in the polymer chain network plays an important role for lowering viscosity. A6-L/PA66 composites impregnated with 40 wt% glass fiber show a twofold increase in the melt flow index while maintaining their mechanical strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hult, M. Johansson, and E. Malmstrom, Advances in Polymer Science (Branched Polymers II), Springer-Verlag, Berlin Heidelberg, 1999, Vol. 143, pp 1–34.

    Article  CAS  Google Scholar 

  2. R. Mulhaupt, T. Engelhardt, and N. Schall, Kunststoffe International, 10, 55 (2001).

    Google Scholar 

  3. D. J. Brunelle, in Cyclic Polymers, J. A. Semlyen, Eds., 2nd ed., Kluwer Academic Publishers, New York, 2002, pp 185–228.

  4. J. Murphy, Additives for Plastics Handbook, 2nd ed., Elsevier Science Ltd, Oxford, 2001, pp 205–218.

    Book  Google Scholar 

  5. E. Richter, Kunststoffe International, 9, 36 (2000).

    Google Scholar 

  6. T. S. Ellis, Polymer, 36, 3919 (1995).

    Article  CAS  Google Scholar 

  7. Y. Li and G. Yang, Macromol. Rapid Commun., 25, 1714 (2004).

    Article  CAS  Google Scholar 

  8. X. Wang, G. Yang, and O. Zheng, Macromol. Mater. Eng., 292, 197 (2007).

    Article  CAS  Google Scholar 

  9. M. Shibayama, K. Ueonoyama, J. Oura, S. Nomura, and T. Iwamoto, Polymer, 36, 4811 (1995).

    Article  CAS  Google Scholar 

  10. Y. Liu and J. A. Donovan, Polymer, 36, 4797 (1995).

    Article  CAS  Google Scholar 

  11. M. Wei, D. Shin, B. Urban, and A. E. Tonelli, J. Polym. Sci., 42, 1369 (2004).

    Article  CAS  Google Scholar 

  12. Y. P. Khanna, N. S. Murthy, W. P. Kuhn, and E. D. Day, Polym. Eng. Sci., 39, 2222 (1999).

    Article  CAS  Google Scholar 

  13. D. Tomova, J. Kressler, and H. J. Radusch, Polymer, 41, 7773 (2000).

    Article  CAS  Google Scholar 

  14. D. J. Skrovanek, S. E. Howe, P. C. Painter, and M. M. Coleman, Macromolecules, 18, 1676 (1985).

    Article  CAS  Google Scholar 

  15. D. J. Skrovanek, P. C. Painter, and M. M. Coleman, Macromolecules, 19, 699 (1986).

    Article  CAS  Google Scholar 

  16. H. R. Kricheldorf, M. A. Masri, and G. Schwarz, Macromolecules, 36, 8648 (2003).

    Article  CAS  Google Scholar 

  17. H. R. Kricheldorf, S. Böhme, and G. Schwarz, Macromolecules, 34, 8879 (2001).

    Article  CAS  Google Scholar 

  18. R. Rulkens and R. Peters, J. Polym. Sci., 49, 2090 (2011).

    Article  CAS  Google Scholar 

  19. G. Montaudo, M. S. Montaudo, C. Puglsi, and F. Sampri, J. Polym. Sci., 34, 439 (1996).

    Article  CAS  Google Scholar 

  20. D. Chonna, C. Pulisi, F. Samperi, G. Montaudo, and A. Turturro, Macromol. Rapid Commun., 22, 524 (2001).

    Article  Google Scholar 

  21. C. Pulisi, F. Samperi, S. D. Giorgi, and G. Montaudo, Polym. Degrad. Stab., 78, 369 (2002).

    Article  Google Scholar 

  22. H. Mitomo, K. Nakazato, and I. Kuriyama, Polymer, 19, 1427 (1978).

    Article  CAS  Google Scholar 

  23. T. Arakawa, F. Nagatoshi, and N. Arai, J. Polym. Sci., 6, 513 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Min Jung.

Additional information

Acknowledgments: This work was supported by the Technology Industrial Innovation funded by the Ministry of Trade, Industry & Energy (MI, Korea) (grant number 10050523).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Seo, W.G., Kim, J. et al. Amide-based oligomers for low-viscosity composites of polyamide 66. Macromol. Res. 25, 1000–1006 (2017). https://doi.org/10.1007/s13233-017-5129-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5129-2

Keywords

Navigation