Skip to main content
Log in

Influence of the molecular weights of amino-ended hyperbranched polyamide template on the morphology of self-assembled ZnS nanoparticles

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Zinc sulfide (ZnS) as an important photocatalytic material in photodegrading organic dyes has attracted increasing attention to obtain high activity crystal structures. Here we report synthesis of wurtzite ZnS nanoparticles using amino-ended hyperbranched polyamide (AEHPA) with different molecular weights as templates. The microstructure, morphology and optical properties of the self-assembled ZnS particles were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence spectra and UV-vis absorption. The molecular weight of the template has a remarkable influence on the microstructure and photocatalytic property of the self-assembled ZnS. Photocatalytic tests showed that the ZnS nanoparticle obtained using the AEHPA with a moderate molecular weight as template performed the best function in degradation of Rhodamine B under UV irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tang, X. Liu, C. Ma, M. Zhou, P. Huo, L. Yu, J. Pan, W. Shi, and Y. Yan, New J. Chem., 39, 5150 (2015).

    Article  CAS  Google Scholar 

  2. X. Huang, Y. Q. Yu, J. Xia, H. Fan, L. Wang, M. G. Willinger, X. P. Yang, Y. Jiang, T.-R. Zhang, and X. M. Meng, Nanoscale, 7, 5311 (2015).

    Article  CAS  Google Scholar 

  3. X. Xu, L. Hu, N. Gao, S. Liu, S. Wageh, A. A. Al Ghamdi, A. Alshahrie, and X. Fang, Adv. Funct. Mater., 25, 495 (2015).

    Article  Google Scholar 

  4. G. Niu, N. Li, L. Wang, W. Li, and Y. Qiu, Phys. Chem. Chem. Phys., 16, 18327 (2014).

    Article  CAS  Google Scholar 

  5. X. Zhao, F. Li, Q. Zhang, Z. Li, Y. Zhou, J. Yang, C. Dong, J. Wang, and S. Shuang, RSC Adv., 5, 21504 (2015).

    Article  CAS  Google Scholar 

  6. X. Wei, Z. P. Zhou, T. F. Hao, H. J. Li, and Y. S. Yan, RSC Adv., 5, 19799 (2015).

    Article  CAS  Google Scholar 

  7. W. Zhang, S. Wang, Y. Wang, Z. Zhu, X. Gao, J. Yang, and H. Zhang, RSC Adv., 5, 2620 (2015).

    Article  CAS  Google Scholar 

  8. H. D. Duang and J. I. Rhee, Talanta, 73, 899 (2008).

    Article  Google Scholar 

  9. K. Kaviyarasu, E. Manikandan, J. Kennedy, and M. Jayachandran, Mater. Lett., 120, 243 (2014).

    Article  CAS  Google Scholar 

  10. K. Kaviyarasu, E. Manikandan, P. Paulraj, S. B. Mohamed, and J. Kennedy, J. Alloys Compd., 593, 67 (2014).

    Article  CAS  Google Scholar 

  11. K. Kaviyarasu, E. Manikandan, J. Kennedy, and M. Maaza, RSC Adv., 5, 82421 (2015).

    Article  CAS  Google Scholar 

  12. Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, Phys. Chem. Chem. Phys., 17, 1870 (2015).

    Article  CAS  Google Scholar 

  13. Q. Peng, L. Han, X. Wen, S. Liu, Z. Chen, J. Lian, and S. De, RSC Adv., 5, 11240 (2015).

    Article  CAS  Google Scholar 

  14. M. Guth, A. Dinia, G. Schmerber, and H. A. M. den Berg. Van, Appl. Phys. Lett., 78, 3487 (2001).

    Article  CAS  Google Scholar 

  15. M. S. Akhtar, Y. G. Alghamdi, M. Azad Malik, R. M. Arif Khalil, S. Riaz, and S. Naseem, J. Mater. Chem. C, 3, 6755 (2015).

    Article  CAS  Google Scholar 

  16. Y. Ito, K. Matsuda, and Y. Kanemitsu, Phys. Status Solidi C, 6, 221 (2009).

    Article  CAS  Google Scholar 

  17. M. Li, S. K. Cushing, Q. Wang, X. Shi, L. A. Hornak, Z. Hong, and N. Wu, J. Phys. Chem. Lett., 2, 2125 (2011).

    Article  CAS  Google Scholar 

  18. Z. Li, B. Liu, S. Yu, J. Wang, Q. Li, B. Zou, T. Cui, Z. Liu, Z. Chen, and J. Liu, J. Phys. Chem. C, 115, 357 (2011).

    Article  CAS  Google Scholar 

  19. D. Kurbatov, A. Opanasyuk, and H. Khlyap, Physica Status Solidi A: Appl. Res., 206, 1549 (2009).

    Article  CAS  Google Scholar 

  20. G. O. Siqueira, T. Matencio, H. V. da Silva, Y. G. de Souza, J. D. Ardisson, G. M. de Lima, and A. de Oliveira Porto, Phys. Chem. Chem. Phys., 15, 6796 (2013).

    Article  CAS  Google Scholar 

  21. S. Saha, S. Sarkar, S. Pal, and P. Sarkar, J. Phys. Chem. C, 117, 15890 (2013).

    Article  CAS  Google Scholar 

  22. C. Finetti, M. Colombo, D. Prosperi, G. Alessio, C. Morasso, L. Sola, and M. Chiari, Chem. Commun., 50, 240 (2014).

    Article  CAS  Google Scholar 

  23. L. Fan, H. Song, H. Zhao, G. Pan, H. Yu, X. Bai, S. Li, Y. Lei, Q. Dai, R. Qin, T. Wang, B. Dong, Z. Zheng, and X. Ren, J. Phys. Chem. B, 110, 12948 (2006).

    Article  CAS  Google Scholar 

  24. A. Upcher, V. Ezersky, A. Berman, and Y. Golan, Cryst. Growth Des., 13, 2149 (2013).

    Article  CAS  Google Scholar 

  25. S. H. Yu and M. Yoshimura, Adv. Mater., 14, 296 (2002).

    Article  CAS  Google Scholar 

  26. D. Zhang, L. Qi, H. Cheng, and J. Ma, J. Colloid Interface Sci., 246, 413 (2002).

    Article  CAS  Google Scholar 

  27. Q. Zhao, L. Hou, and R. Huang, Inorg. Chem. Commun., 6, 971 (2003).

    Article  CAS  Google Scholar 

  28. Y. Hariyani and S. Pratapa, AIP Conf. Proc., 1617, 144 (2014).

    Article  CAS  Google Scholar 

  29. B. Sartowska and D. Wawszczak, Nukleonika, 51, S35S39 (2006).

    Google Scholar 

  30. S. Padalkar, J. Hulleman, S. M. Kim, T. Tumkur, J. C. Rochet, E. Stach, and L. Stanciu, J. Nanopart. Res., 11, 2031 (2009).

    Article  CAS  Google Scholar 

  31. Y. C. Zheng, S. P. Li, Z. L. Weng, and C. Cao, Chem. Soc. Rev., 44, 4091 (2015).

    Article  CAS  Google Scholar 

  32. L. J. Deng, F. Q. Huang, F. Q. Gao, Y. Yang, G. X. Yang, and L. U. Tian-Hongb, Chin. J. Appl. Chem., 27, 705 (2010).

    CAS  Google Scholar 

  33. X. Wang, Y. Li, M. Wang, W. Li, M. Chen, and Y. Zhao, New J. Chem., 38, 4182 (2014).

    Article  CAS  Google Scholar 

  34. M. Muruganandham, R. Amutha, E. Repo, M. Sillanp., Y. Kusumoto, and M. Abdulla-Al-Mamun, J. Photochem. Photobiol. A, 216, 133 (2010).

    Article  CAS  Google Scholar 

  35. J.-H. Li, A.-H. Lu, F. Liu, and L.-Z. Fan, 179, 1387 (2008).

  36. S. Xiong, B. Xi, C. Wang, D. Xu, X. Feng, Z. Zhu, and Y. Qian, Adv. Funct. Mater., 17, 2728 (2007).

    Article  CAS  Google Scholar 

  37. H. Tong, Y. J. Zhu, L. X. Yang, L. Li, L. Zhang, J. Chang, L. Q. An, and S. W. Wang, J. Phys. Chem. C, 111, 3893 (2007).

    Article  CAS  Google Scholar 

  38. M. J. Casciato, G. Levitin, D. W. Hess, and M. A. Grover, Ind. Eng. Chem. Res., 51, 11710 (2012).

    Article  CAS  Google Scholar 

  39. S. A. Acharya, N. Maheshwari, L. Tatikondewar, and A. Kshirsagar, S. K. Kulkarni, Cryst. Growth Des., 13, 1369 (2013).

    Article  CAS  Google Scholar 

  40. S. Kar and S. Chaudhuri, J. Phys. Chem. B, 109, 3298 (2005).

    Article  CAS  Google Scholar 

  41. L. Jing, Y. Qu, B. Wang, S. Li, B Jiang, L. Yang, W. Fu, H. Fu, and J. Sun, Sol. Energy Mater. Sol. Cells, 90, 1773 (2006).

    Article  CAS  Google Scholar 

  42. J. Liu, B. Geng, and S. Wang, Cryst. Growth Des., 9, 4384 (2009).

    Article  CAS  Google Scholar 

  43. G. Xi, C. Wang, X. Wang, Q. Zhang, and H. Xiao, J. Phys. Chem. C, 112, 1946 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daohong Zhang or Sufang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Liu, T., Chen, S. et al. Influence of the molecular weights of amino-ended hyperbranched polyamide template on the morphology of self-assembled ZnS nanoparticles. Macromol. Res. 24, 892–899 (2016). https://doi.org/10.1007/s13233-016-4132-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4132-3

Keywords

Navigation