Skip to main content
Log in

Investigation on the photocatalytic and sonophotocatalytic activities of {002} facets of ZnO nanoparticles synthesized through template/surfactant-free hydrothermal method at different temperatures and time durations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Template/surfactant-free ZnO nanoparticles were synthesized by hydrothermal process at 120 °C, 150 °C, 180 °C and 210 °C for 3-h duration and were annealed at 400 °C for 3 h. Since the ZnO nanoparticles synthesized at 150 °C for 3 h and annealed at 400 °C for 3 h showed improved photocatalytic activities, the ZnO nanoparticles were further synthesized at 150 °C for 6-h, 9-h, and 12-h durations and were annealed at 400 °C for 3 h. All the synthesized ZnO nanoparticles were characterized for their structural, optical, and morphological properties. X-ray diffraction analysis confirmed that the ZnO nanoparticles belong to the hexagonal wurtzite system. Transmission electron microscopy and high-resolution transmission electron microscopy analyses revealed that the hydrothermally synthesized ZnO nanoparticles at 150 °C for 3 h and annealed at 400 °C for 3 h acquired spherical and hexagonal morphologies with size ~ 50 nm. Variation in the hydrothermal temperatures and time durations with annealing at 400 °C for 3 h acquired nearly hexagonal, spheroidal, and hexagonal morphology of the ZnO nanoparticles. Optical band gap of synthesized ZnO nanoparticles was slightly influenced by the different synthesis parameters. The photocurrent measurements revealed that the ZnO nanoparticles synthesized at 150 °C for 3 h and annealed at 400 °C for 3 h possess relatively enhanced of photocurrent of about 3.58 μA than that of the other synthesized samples. The ZnO nanoparticles synthesized at 150 °C for 3 h and annealed at 400 °C for 3 h showed ~ 78% and 36% of photodegradation efficiency against Rhodamine B dye and 4-chlorophenol, respectively, in a time period of 60 min. The sonophotocatalytic activity process enhanced degradation efficiency to 99% in 60 min against Rhodamine B and 80% in 60 min against 4-chlorophenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. C. Allegre, M. Maisseu, F. Charbit, P. Moulin, Coagulation–flocculation–decantation of dye house effluents: concentrated effluents. J. Hazard. Mater. B 116, 57–64 (2004). https://doi.org/10.1016/j.jhazmat.2004.07.005

    Article  CAS  Google Scholar 

  2. V. Golob, A. Vinder, M. Simonic, Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents. Dyes Pigments 67, 93–97 (2005). https://doi.org/10.1016/j.dyepig.2004.11.003

    Article  CAS  Google Scholar 

  3. A. Alinsafi, M. Khemis, M.N. Pons, J.P. Leclerc, A. Yacoubi, A. Benhammou, A. Nejmeddine, Electro-coagulation of reactive textile dyes and textile wastewater. Chem. Eng. Proc. 44, 461–470 (2005). https://doi.org/10.1016/j.cep.2004.06.010

    Article  CAS  Google Scholar 

  4. S. Papic, N. Koprivanac, A. Loncaric Bozic, A. Metes, Removal of some reactive dyes from synthetic wastewater by combined Al(III) coagulation/carbon adsorption process. Dyes Pigments 62, 291–298 (2004)

    Article  CAS  Google Scholar 

  5. A. Bhatnagar, M. Sillanp, Removal of natural organic matter (NOM) and its constituents from water by adsorption. Chemosphere 166, 497–510 (2017). https://doi.org/10.1016/j.chemosphere.2016.09.098

    Article  CAS  Google Scholar 

  6. X. Liang, Y. Lu, Z. Li, C. Yang, C. Niu, X. Su, Bentonite/carbon composite as highly recyclable adsorbents for alkaline wastewater treatment and organic dye removal. Microporous Mesoporous Mater. 241, 107–114 (2017). https://doi.org/10.1016/j.micromeso.2016.12.016

    Article  CAS  Google Scholar 

  7. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technol. 77, 247–255 (2001). https://doi.org/10.1016/S0960-8524(00)00080-8

    Article  CAS  Google Scholar 

  8. T.A. Saleh, A. Sari, M. Tuzen, Effective adsorption of antimony(III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent. Chem. Eng. J. 307, 230–238 (2017). https://doi.org/10.1016/j.cej.2016.08.070

    Article  CAS  Google Scholar 

  9. F. Fan, Y. Feng, P. Tang, D. Li, Facile synthesis and photocatalytic performance of ZnO nanoparticles self-assembled spherical aggregates. Mater. Lett. 158, 290–294 (2015). https://doi.org/10.1016/j.matlet.2015.05.109

    Article  CAS  Google Scholar 

  10. J. Xu, Y. Cui, Y. Han, M. Hao, X. Zhang, ZnO-graphene composites with high photocatalytic activities under visible light. RSC Adv. 6, 96778–96784 (2016). https://doi.org/10.1039/C6RA19622E

    Article  CAS  Google Scholar 

  11. N.B. Bokhale, S.D. Bomble, R.R. Dalbhanjan, D.D. Mahale, S.P. Hinge, B.S. Banerjee, A.V. Mohod, P.R. Gogate, Sonocatalytic and sonophotocatalytic degradation of rhodamine 6G containing wastewaters. Ultrason. Sonochem. 21, 1797–1804 (2014). https://doi.org/10.1016/j.ultsonch.2014.03.022

    Article  CAS  Google Scholar 

  12. K. Tanaka, K. Padermpole, T. Hisanaga, Photocatalytic degradation of commercial azo dyes. Water Res. 34, 327–333 (2000). https://doi.org/10.1016/S0043-1354(99)00093-7

    Article  CAS  Google Scholar 

  13. H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012). https://doi.org/10.1002/adma.201102752

    Article  CAS  Google Scholar 

  14. A.B. Djurisic, Y.H. Leung, A.M.C. Ng, Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Mater. Horiz. 1, 400–410 (2014). https://doi.org/10.1039/C4MH00031E

    Article  CAS  Google Scholar 

  15. F. Seker, K. Meeker, T.F. Kuech, A.B. Ellis, Surface chemistry of prototypical bulk II-VI and III-V semiconductors and implications for chemical sensing. Chem. Rev. 100, 2505–2536 (2000). https://doi.org/10.1021/cr980093r

    Article  CAS  Google Scholar 

  16. A. Mclaren, T.V. Solis, G. Li, S.C. Tsang, Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 131, 12540–12541 (2009). https://doi.org/10.1021/ja9052703

    Article  CAS  Google Scholar 

  17. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191–195 (2005)

    Article  CAS  Google Scholar 

  18. X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131, 3152–3153 (2009)

    Article  CAS  Google Scholar 

  19. Z. Zhang, M.F. Hossain, T. Takahashi, Fabrication of shape-controlled α-Fe2O3 nanostructures by sonoelectrochemical anodization for visible light photocatalytic application. Mater. Lett. 64, 435–438 (2010). https://doi.org/10.1016/j.matlet.2009.10.071

    Article  CAS  Google Scholar 

  20. P. Karthik, R. Vinoth, P. Selvam, E. Balaraman, M. Navaneethan, Y. Hayakawa, B. Neppolian, Visible-Light active catechol-metal oxide carbonaceous polymeric material for enhanced photocatalytic activity. J. Mater. Chem. A 5, 384–396 (2017). https://doi.org/10.1039/C6TA07685H

    Article  CAS  Google Scholar 

  21. Q.I. Rahman, Musheer Ahmad, Sunil Kumar Misra, Minaxi Lohani, Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Mater. Lett. 91, 170–174 (2013). https://doi.org/10.1016/j.matlet.2012.09.044

    Article  CAS  Google Scholar 

  22. S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater. Sol. Cells 77, 65–82 (2003). https://doi.org/10.1016/S0927-0248(02)00255-6

    Article  CAS  Google Scholar 

  23. C.S. Chen, X.D. Xie, T.G. Liu, L.W. Lin, J.C. Kuang, X.L. Xie, L.J. Lu, S.Y. Cao, Multi-walled carbon nanotubes supported Cu-doped ZnO nanoparticles and their optical property. J. Nanoparticle Res. 14, 817–825 (2012)

    Article  CAS  Google Scholar 

  24. X. Wang, L. Yin, G. Liu, L. Wang, R. Saito, G.Q. Lu, H.-M. Cheng, Polar interface-induced improvement in high photocatalytic hydrogen evolution over ZnO-CdS heterostructures. Energy Environ. Sci. 4, 3976–3979 (2011)

    Article  CAS  Google Scholar 

  25. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995). https://doi.org/10.1021/cr00033a004

    Article  CAS  Google Scholar 

  26. E.S. Jang, J.-H. Won, S.-J. Hwang, J.-H. Choy, Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv. Mater. 18, 3309–3312 (2006)

    Article  CAS  Google Scholar 

  27. J. Liu, X. Chen, W. Wang, Y. Liu, Q. Huanga, Z. Guo, Self-assembly of [10-10] grown ZnO nanowhiskers with exposed reactive (0001) facets on hollow spheres and their enhanced gas sensitivity. CrystEngComm 13, 3425–3431 (2011). https://doi.org/10.1039/C0CE00821D

    Article  CAS  Google Scholar 

  28. Y. Yuan, G.F. Huang, W.Y. Hu, D.N. Xiong, W.Q. Huang, Tunable synthesis of various ZnO architectural structures with enhanced photocatalytic activities. Mater. Lett. 175, 68–71 (2016). https://doi.org/10.1016/j.matlet.2016.03.138

    Article  CAS  Google Scholar 

  29. X.-G. Han, H.-Z. He, Q. Kuang, X. Zhou, X.-H. Zhang, T. Xu, Z.-X. Xie, L.-S. Zheng, Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J. Phys. Chem. C 113, 584–589 (2009)

    Article  CAS  Google Scholar 

  30. J. Xu, Z. Xue, N. Qin, Z. Cheng, Q. Xiang, The crystal facet-dependent gas sensing properties of ZnO nanosheets: Experimental and computational study. Sensor Actuat. B-Chem. 242, 148–157 (2017). https://doi.org/10.1016/j.snb.2016.09.193

    Article  CAS  Google Scholar 

  31. J.H. Zeng, B.B. Jin, Y.F. Wang, Facet enhanced photocatalytic effect with uniform single-crystalline zinc oxide nanodisks. Chem. Phys. Lett. 472, 90–95 (2009). https://doi.org/10.1016/j.cplett.2009.02.082

    Article  CAS  Google Scholar 

  32. D. Raoufi, Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renew. Energy 50, 932–937 (2013). https://doi.org/10.1016/j.renene.2012.08.076

    Article  CAS  Google Scholar 

  33. L. Zhang, L. Yin, C. Wang, N. Lun, Y. Qi, Sol-gel growth of hexagonal faceted ZnO prism quantum dots with polar surfaces for enhanced photocatalytic activity. Appl. Mater. Interfaces 2, 1769–1773 (2010). https://doi.org/10.1021/am100274d

    Article  CAS  Google Scholar 

  34. H. Lu, S. Wang, L. Zhao, J. Li, B. Donga, Z. Xu, Hierarchical ZnO microarchitectures assembled by ultrathin nanosheets: hydrothermal synthesis and enhanced photocatalytic activity. J. Mater. Chem. 21, 4228–4234 (2011). https://doi.org/10.1039/C0JM03390A

    Article  CAS  Google Scholar 

  35. J. Das, D. Khushalani, Nonhydrolytic Route for Synthesis of ZnO and its use as a recyclable photocatalyst. J. Phys. Chem. C 114, 2544–2550 (2010). https://doi.org/10.1021/jp910773v

    Article  CAS  Google Scholar 

  36. R.S. Yadav, P. Mishra, A.C. Pandey, Growth mechanism and optical property of ZnO nanoparticles synthesized by sonochemical method. Ultrason. Sonochem. 15, 863–868 (2008)

    Article  CAS  Google Scholar 

  37. S.B. Babar, N.L. Gavade, J. Park, K.M. Garadkar, V.M. Bhuse, Effect of leavening agent on structural and photocatalytic properties of ZnO nanorods. J. Mater. Sci.: Mater. Electron. 28, 8372–8381 (2017). https://doi.org/10.1007/s10854-017-6554-x

    Article  CAS  Google Scholar 

  38. S.M. Mousavi, A.R. Mahjoub, R. Abazari, Green synthesis of ZnO hollow sphere nanostructures by facile route at room temperature with efficient photocatalytic dye degradation. RSC Adv. 5, 107378–107388 (2015). https://doi.org/10.1039/C5RA19507A

    Article  CAS  Google Scholar 

  39. M. Cao, F. Wang, J. Zhu, X. Zhang, Y. Qin, L. Wang, Shape-controlled synthesis of flower-like ZnO microstructures and their enhanced photocatalytic properties. Mater. Lett. 192, 1–4 (2017). https://doi.org/10.1016/j.matlet.2017.01.051

    Article  CAS  Google Scholar 

  40. R. Khan, M.S. Hassan, L.W. Jang, J.H. Yun, H.K. Ahn, M.S. Khil, I.H. Lee, Low temperature synthesis of ZnO quantum dots for photocatalytic degradation of methyl orange dye under UV irradiation. Ceram. Int. 40, 14827–14831 (2014). https://doi.org/10.1016/j.ceramint.2014.06.076

    Article  CAS  Google Scholar 

  41. B. Neppolian, A. Doronila, M. Ashokkumar, Sonochemical oxidation of arsenic(III) to arsenic(V) using potassium peroxydisulfate as an oxidizing agent. Water. Res. 44, 3687–3695 (2010). https://doi.org/10.1016/j.watres.2010.04.003

    Article  CAS  Google Scholar 

  42. R. Vinoth, P. Karthik, K. Devan, B. Neppolian, M. Ashokkumar, TiO2-NiO p-n nanocomposite with enhanced sonophotocatalytic activity under diffused sunlight. Ultrason. Sonochem. 35, 655–663 (2017). https://doi.org/10.1016/j.ultsonch.2016.03.005

    Article  CAS  Google Scholar 

  43. S. GaneshBabu, R. Vinoth, B. Neppolian, D. Dionysiou, M. Ashokkumar, Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst. J. Hazard. Mater. 291, 83–92 (2015)

    Article  Google Scholar 

  44. B. Neppolian, A. Bruno, C.L. Bianchi, M. Ashokkumar, Graphene oxide based Pt–TiO2 photocatalyst: ultrasound assisted synthesis, characterization and catalytic efficiency. Ultrason. Sonochem. 19, 9–15 (2012)

    Article  CAS  Google Scholar 

  45. Y. He, F. Grieser, M. Ashokkumar, The mechanism of sonophotocatalytic degradation of methyl orange and its products in aqueous solutions. Ultrason. Sonochem. 18, 974–980 (2011). https://doi.org/10.1016/j.ultsonch.2011.03.017

    Article  CAS  Google Scholar 

  46. N. Kumaresan, K. Ramamurthi, R. RameshBabu, K. Sethuraman, S. MoorthyBabu, Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity. Appl. Surf. Sci. 418, 138–146 (2017)

    Article  CAS  Google Scholar 

  47. B.D. Cullity (1978) Elements of X-Ray Diffraction, 2nd edn. Addison-Wesley, Reading

  48. R. Romero, D. Leinen, E.A. Dalchiele, J.R. Ramos-Barrado, F. Martín, The effects of zinc acetate and zinc chloride precursors on the preferred crystalline orientation of ZnO and Al-doped ZnO thin films obtained by spray pyrolysis. Thin Solid Films 515, 1942–1949 (2006). https://doi.org/10.1016/j.tsf.2006.07.152

    Article  CAS  Google Scholar 

  49. W.-K. Jo, J.Y. Lee, N.C.S. Selvam, Synthesis of MoS2 nanosheets loaded ZnO–g-C3N4 nanocomposites for enhanced photocatalytic applications. Chem. Eng. J. 289, 306–318 (2016). https://doi.org/10.1016/j.cej.2015.12.080

    Article  CAS  Google Scholar 

  50. R. Atchudan, T.N.J.I. Edison, S. Perumal, D. Karthikeyan, Y.R. Lee, Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. J. Photochem. Photobiol. B 162, 500–510 (2016)

    Article  CAS  Google Scholar 

  51. S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker, B. Sreedhar, Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core–shell nanoplates with excellent visible-light responsive photocatalysis. Nanoscale 6, 4830–4842 (2014). https://doi.org/10.1039/C3NR05271K

    Article  CAS  Google Scholar 

  52. B. Archana, K. Manjunath, G. Nagaraju, K.B. Chandra Sekhar, N. Kottam, Enhanced photocatalytic hydrogen generation and photostability of ZnO nanoparticles obtained via green synthesis. Int. J. Hydrogen Energy 42, 5125–5131 (2017)

    Article  CAS  Google Scholar 

  53. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 4, 4024–4030 (2012). https://doi.org/10.1021/am300835p

    Article  CAS  Google Scholar 

  54. D. Chen, Z. Wang, T. Ren, H. Ding, W. Yao, R. Zong, Y. Zhu, Influence of defects on the photocatalytic activity of ZnO. J. Phys. Chem. C 118, 15300–15307 (2014). https://doi.org/10.1021/jp5033349

    Article  CAS  Google Scholar 

  55. P. Kubelka, New contributions to the optics of intensely light-scattering materials. Part I. J. Opt. Soc. Am. 38, 448–457 (1948). https://doi.org/10.1364/JOSA.38.000448

    Article  CAS  Google Scholar 

  56. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett. 78, 407–409 (2001). https://doi.org/10.1063/1.1342050

    Article  CAS  Google Scholar 

  57. G. Patrinoiu, M. Tudose, J.M. Calderon-Moreno, R. Birjega, P. Budrugeac, R. Ene, O. Carp, A green chemical approach to the synthesis of photoluminescent ZnO hollow spheres with enhanced photocatalytic properties. J. Solid State Chem. 186, 17–22 (2012). https://doi.org/10.1016/j.jssc.2011.11.024

    Article  CAS  Google Scholar 

  58. K. Venheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983–7990 (1996). https://doi.org/10.1063/1.362349

    Article  Google Scholar 

  59. K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology (Noyes Publications, Park Ridge, 2001)

    Google Scholar 

  60. H. Hayashi, Y. Hakuta, Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3, 3794–3817 (2010). https://doi.org/10.3390/ma3073794

    Article  CAS  Google Scholar 

  61. S.G. Anju, S. Yesodharan, E.P. Yesodharan, Zinc oxide mediated sonophotocatalytic degradation of phenol in water. Chem. Eng. J. 189–190, 84–93 (2012). https://doi.org/10.1016/j.cej.2012.02.032

    Article  CAS  Google Scholar 

  62. I.M. Khokhawala, P.R. Gogate, Degradation of phenol using a combination of ultrasonic and UV irradiations at pilot scale operation. Ultrason. Sonochem. 17, 833–838 (2010). https://doi.org/10.1016/j.ultsonch.2010.02.012

    Article  CAS  Google Scholar 

  63. C. Lops, A. Ancona, K.D. Cesare, B. Dumontel, N. Garino, G. Canavese, S. Hérnandez, V. Cauda, Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Appl. Catal. B 243, 629–640 (2019). https://doi.org/10.1016/j.apcatb.2018.10.078

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (N. K) thanks SRM Institute of Science and Technology, Chennai for the award of SRM Institute of Science and Technology Junior Research Fellowship to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ramamurthi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumaresan, N., Maria Angelin Sinthiya, M., Praveen Kumar, M. et al. Investigation on the photocatalytic and sonophotocatalytic activities of {002} facets of ZnO nanoparticles synthesized through template/surfactant-free hydrothermal method at different temperatures and time durations. J Mater Sci: Mater Electron 31, 13817–13837 (2020). https://doi.org/10.1007/s10854-020-03942-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03942-2

Navigation