Skip to main content
Log in

Tri-layered silk fibroin and poly-ɛ-caprolactone small diameter vascular grafts tested in vitro and in vivo

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A silk fibroin (SF) and poly-ε-caprolactone (PCL) tri-layered nano-fibrous scaffold composed of an inner, middle, and outer layer is fabricated via sequential electrospinning. The middle layer of the SF/PCL blend nano-fiber is introduced to minimize delamination of each layer of the scaffold. The inner layer is composed of SF with Spirulina maxima extract (SP), and the outer is composed of PCL. The anti-thrombic effects of SP are tested first. The structure, mechanical properties, and cytocompatibility of the scaffold are evaluated. The tri-layered nano-fiber scaffold is implanted into a rat carotid artery, and the sample after 3 weeks of implantation is evaluated histologically. The SP exerts anti-thrombic activity, and the SF with SP inhibits platelet adhesion. The tri-layered scaffold with the middle layer composed of SF/PCL blend exhibits excellent tensile strengths, burst pressure strength, and suture retention strength. The fabricated material does not induce any cytotoxicity. The cells are well spread on the scaffold. Recipient vessel maintains patency 3 weeks after implantation. The inner lumen of the scaffold reveals regenerated endothelial cells. The results indicate that the tri-layered tubular SF/PCL vascular grafts can be used in vascular tissue engineering due to their excellent mechanical properties and good tissue regeneration capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Marelli, A. Alessandrino, S. Farè, G. Freddi, D. Mantovani, and M. C. Tanzi, Acta Biomater., 6, 4019 (2010).

    Article  CAS  Google Scholar 

  2. H. Bergmeister, C. Schreiber, C. Grasl, I. Walter, R. Plasenzotti, M. Stoiber, D. Bernhard, and H. Schima, Acta Biomater., 9, 6032 (2013).

    Article  CAS  Google Scholar 

  3. J. van der Slegt, S. L. Steunenberg, J. M. Donker, E. J. Veen, G. H. Ho, H. G. de Groot, and L. van der Laan, J. Vasc. Surg., 1, 120 (2014).

    Article  Google Scholar 

  4. S. L. Dahl, A. P. Kypson, J. H. Lawson, J. L. Blum, J. T. Strader, Y. Li, R. J. Manson, W. E. Tente, L. DiBernardo, M. T. Hensley, R. Carter, T. P. Williams, H. L. Prichard, M. S. Dey, K. G. Bequlman, and L. E. Niclason, Sci. Transl. Med., 3, 68 (2011).

    Article  Google Scholar 

  5. P. Lamm, G. Juchem, S. Milz, M. Schuffenhauer, and B. Reichart, Circulation. 104, I108 (2001).

    Article  CAS  Google Scholar 

  6. J. A. G. Rhodin, in Architecture of the Vessel Wall, Comprehensive Physiology, John Wiley and Sons, Michigan, 2011, pp 10–31.

    Google Scholar 

  7. C. Huang, S. Wang, L. Qiu, Q. Ke, W. Zhai, and X. Mo, ACS Appl. Mater. Interfaces, 5, 2220 (2013).

    Article  CAS  Google Scholar 

  8. S. J. Lee, J. Liu, S. H. Oh, S. Soker, A. Atala, and J. J. Yoo, Biomaterials, 29, 2891(2008).

    Article  CAS  Google Scholar 

  9. C. E. Ghezzi, B. Marelli, N. Muja, and S. N. Nazhat, Acta Biomater., 8, 1813 (2012).

    Article  CAS  Google Scholar 

  10. C. Vaz, S. Van Tuijl, C. Bouten, and F. Baaijens, Acta Biomater., 1, 575 (2005).

    Article  CAS  Google Scholar 

  11. F. G. Omenetto and D. L. Kaplan, Science, 329, 528 (2010).

    Article  CAS  Google Scholar 

  12. S. C. Kundu, B. C. Dash, R. Dash, and D. L. Kaplan, Prog. Polym. Sci., 33, 998 (2008).

    Article  CAS  Google Scholar 

  13. S. C. Kundu, B. Kundu, S. Talukdar, S. Bano, S. Nayak, J. Kundu, B. B. Mandal, N. Bhardwaj, M. Botlagunta, B. C. Dash, C. Acharya, and A. K. Ghosh, Biopolymers, 97, 455 (2012).

    Article  CAS  Google Scholar 

  14. B. Kundu, R. Rajkhowa, S. C. Kundu, and X. Wang, Adv. Drug Deliv. Rev., 65, 457 (2013).

    Article  CAS  Google Scholar 

  15. C. Vepari and D. L. Kaplan, Prog. Polym. Sci., 32, 991 (2007).

    Article  CAS  Google Scholar 

  16. T. Fukayama, K. Takagi, R. Tanaka, Y. Hatakeyama, D. Aytemiz, Y. Suzuki, and T. Asakura, Ann. Vasc. Surg., 29, 341 (2015).

    Article  Google Scholar 

  17. T. Yagi, M. Sato, Y. Nakazawa, K. Tanaka, M. Sata, K. Itoh, Y. Takagi, and T. Asakura, J. Artif. Organs., 14, 89 (2011).

    Article  CAS  Google Scholar 

  18. M. Lovett, G. Eng, J. A. Kluge, C. Cannizzaro, G. Vunjak- Novakovic, and D. L. Kaplan, Organogenesis, 6, 217 (2010).

    Article  Google Scholar 

  19. Y. Nakazawa, M. Sato, R. Takahashi, D. Aytemiz, C. Takabayashi, T. Tamura, S. Enomoto, M. Sata, and T. Asakura, J. Biomater. Sci. Polym. Ed., 22, 195 (2011).

    Article  CAS  Google Scholar 

  20. S. Enomoto, M. Sumi, K. Kajimoto, Y. Nakazawa, R. Takahashi, C. Takabayashi, T. Asakura, and M. Sata, J. Vasc. Surg., 51, 155 (2010).

    Article  Google Scholar 

  21. A. J. Melchiorri, N. Hibino, and J. P. Fisher, Tissue Eng. Part B: Rev., 19, 292 (2013).

    Article  CAS  Google Scholar 

  22. H. Maidoub, M. Ben Mansour, F. Chaubet, M. S. Roudesli, and R. M. Maaroufi, Biochim. Biophys. Acta, 1790, 1377 (2009).

    Article  Google Scholar 

  23. M. H. Son, K. H. Park, A. R. Choi, G. J. Yoo, M. J. In, D. H. Kim, and H. J. Chae, J. Kor. Soc. Food Sci. Nutr., 38, 136 (2009).

    Article  CAS  Google Scholar 

  24. B. G. Cha, H. W. Kwak, A. R. Park, S. H. Kim, S. Y. Park, H. J. Kim, I. S. Kim, K. H. Lee, and Y. H. Park, Biopolymers, 101, 307 (2014).

    Article  CAS  Google Scholar 

  25. W. L. Chu, Y. W. Lim, A. K. Radhakrishnan, P. E. Lim, BMC Complement. Altern. Med., 21, 53 (2010).

    Google Scholar 

  26. C. J. Bang, A. Berstad, and I. Talstad, Haemostasis, 21, 155 (1991).

    CAS  Google Scholar 

  27. F. Han, X. Jia, D. Dai, X. Yang, J. Zhao, Y. Zhao, Y. Fan, and X. Yuan, Biomaterials, 34, 7302 (2013).

    Article  CAS  Google Scholar 

  28. A. Nieponice, L. Soletti, J. Guan, B. M. Deasy, J. Huard, W. R. Wagner, and D. A. Vorp, Biomaterials, 29, 825 (2008).

    Article  CAS  Google Scholar 

  29. B. G. Cha, H. W. Kwak, A. R. Park, S. H. Kim, S. Y. Park, H. J. Kim, I. S. Kim, K. H. Lee, and Y. H. Park, Biopolymers, 101, 307 (2014).

    Article  CAS  Google Scholar 

  30. H. Doshi, A. Ray, and I. L. Kothari, Curr. Microbiol., 54, 213 (2007).

    Article  CAS  Google Scholar 

  31. K. Pugazhendy, Int. J. Pharm. Biol. Arch., 3, 969 (2012).

    Google Scholar 

  32. T. Elzein, M. Nasser-Eddine, C. Delaite, S. Bistac, and P. Dumas, J. Colloid Interface Sci., 273, 381 (2004).

    Article  CAS  Google Scholar 

  33. W. Zhou, J. He, S. Du, S. Cui, and W. Gao, Iran. Polym. J., 20, 389 (2011).

    CAS  Google Scholar 

  34. M. Zoccola, A. Aluigi, C. Vineis, C. Tonin, F. Ferrero, and M. G. Piacentino, Biomacromolecules, 9, 2819 (2008).

    Article  CAS  Google Scholar 

  35. Y. Nakazawa, M. Sato, R. Takahashi, D. Aytemiz, C. Takabayashi, T. Tamura, S. Enomoto, M. Sata, and T. Asakura, J. Biomater. Sci. Polym. Ed., 22, 195 (2011).

    Article  CAS  Google Scholar 

  36. K. Billiar, J. Murray, D. Laude, G. Abraham, and N. Bachrach, J Biomed. Mater. Res., 56, 101 (2001).

    Article  CAS  Google Scholar 

  37. G. Konig, T. N. Mcallister, N. Dusserre, S. A. Garrido, C. Iyican, A. Marini, A. Fiorillo, H. Avila, W. Wystrychowski, K. Zagalski, M. Maruszewski, A. L. Jones, L. Cierpka, L. M. de la Fuente, and N. L’Heureux. Biomaterials, 30, 1542 (2009).

    Article  CAS  Google Scholar 

  38. S. Sarkar, H. Salacinski, G. Hamilton, and A. Seifalian, Eur. J. Vasc. Endovasc. Surg., 31, 627 (2006).

    Article  CAS  Google Scholar 

  39. J. P. Stegemann, S. N. Kaszuba, and S. L. Rowe, Tissue Eng., 13, 2601 (2007).

    Article  CAS  Google Scholar 

  40. K. Kottke-Marchant, A. A. Veenstra, and R. E. Marchant, J. Biomed. Mater. Res., 30, 209 (1996).

    Article  CAS  Google Scholar 

  41. Ash. Asran, K. Razghandi, N. Aggarwal, G. H. Michler, and T. Groth, Biomacromolecules, 11, 3413 (2010).

    Article  CAS  Google Scholar 

  42. G. Altankov, K. Richau, and T. Groth, Materwiss. Werksttech., 34, 1120 (2003).

    Article  CAS  Google Scholar 

  43. J. E. Murphy-Ullrich, J Clin Invest. 107, 785 (2001).

    Article  CAS  Google Scholar 

  44. S. Liu, C. Dong, G. Lu, Q. Lu, Z. Li, D. L. Kaplan, and H. Zhu, Acta Biomater., 9, 8991 (2013).

    Article  CAS  Google Scholar 

  45. B. Marelli, M. Achilli, A. Alessandrino, G. Freddi, M. C. Tanzi, S. Farè, and D. Mantovani, Macromol. Biosci., 12, 1566 (2012).

    Article  CAS  Google Scholar 

  46. H. Liu, X. Li, X. Niu, G. Zhou, P. Li, and Y. Fan. Biomacromolecules, 12, 2914 (2011).

    Article  CAS  Google Scholar 

  47. X. Zhang, X. Wang, V. Keshav, X. Wang, J. T. Johanas, G. G. Leisk, and D. L. Kaplan, Biomaterials, 30, 3213 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Hwan Park or Seong-Gon Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, A.R., Park, YH., Kim, H.J. et al. Tri-layered silk fibroin and poly-ɛ-caprolactone small diameter vascular grafts tested in vitro and in vivo . Macromol. Res. 23, 924–936 (2015). https://doi.org/10.1007/s13233-015-3126-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3126-x

Keywords

Navigation