Skip to main content

Advertisement

Log in

Poly(l-lactide-co-caprolactone)/tussah silk fibroin nanofiber vascular scaffolds with small diameter fabricated by core-spun electrospinning technology

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A biomimetic vascular scaffold with excellent mechanical properties and biocompatibility is urgently needed, and designing such a scaffold is a challenge. The majority of vascular scaffolds have satisfactory biocompatibility, but poor mechanical properties. Herein, biodegradable poly(l-lactide-co-caprolactone) (PLCL) with biomimetic mechanical properties was used to prepare small-diameter (< 1.5 mm) PLCL/tussah silk fibroin (TSF) nanofiber vascular scaffolds grafted with TSF using the core-spun electrospinning technology. The morphology, biocompatibility, and mechanical properties of the PLCL/TSF nanofiber vascular scaffolds were characterized. The diameter of PLCL/TSF nanofibers was almost unchanged after grafting TSF with an average diameter of 408 ± 13 nm and a reduced water contact angle of 56 ± 8°. The protein adsorption was twice that of pure PLCL nanofiber vascular scaffolds. Remarkably, PLCL/TSF nanofiber vascular scaffolds displayed excellent mechanical properties. Their radial tensile strength and axial Young’s modulus were twice and more than three times those of traditional nanofiber vascular scaffolds, respectively. The biological properties of PLCL/TSF nanofiber vascular scaffolds were evaluated by in vitro culture of vascular endothelial cells. The scaffolds effectively promoted vascular endothelial cell adhesion and proliferation. The developed PLCL/TSF nanofiber vascular scaffolds are potentially valuable for use as readily available vascular grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Pashneh-Tala S, MacNeil S, Claeyssens F (2016) The tissue-engineered vascular graft-past, present, and future. Tissue Eng B Rev 22(1):68–100

    CAS  Google Scholar 

  2. Jaganathan SK, Mani MP, Ayyar M, Supriyanto E (2017) Engineered electrospun polyurethane and castor oil nanocomposite scaffolds for cardiovascular applications. J Mater Sci 52(18):10673–10685. https://doi.org/10.1007/s10853-017-1286-0

    Article  CAS  Google Scholar 

  3. Asadpour S, Yeganeh H, Ai J, Ghanbari H (2018) A novel polyurethane modified with biomacromolecules for small-diameter vascular graft applications. J Mater Sci 53(14):9913–9927. https://doi.org/10.1007/s10853-018-2321-5

    Article  CAS  Google Scholar 

  4. Sidney S, Rosamond WD, Howard VJ, Luepker RV, Natl Forum Heart Dis Stroke P (2013) The “heart disease and stroke statistics-2013 update” and the Need for a national cardiovascular surveillance system. Circulation 127(1):21–23

    Google Scholar 

  5. Badimon L, Padró T, Vilahur G (2012) Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur Heart J Acute Cardiovasc Care 1(1):60–74

    Google Scholar 

  6. Koens MJW, Faraj KA, Wismans RG, van der Vliet JA, Krasznai AG, Cuijpers VMIJ, Jansen JA, Daamen WF et al (2010) Controlled fabrication of triple layered and molecularly defined collagen/elastin vascular grafts resembling the native blood vessel. Acta Biomater 6(12):4666–4674

    CAS  Google Scholar 

  7. Lee SJ, Yoo JJ, Lim GJ, Atala A, Stitze J (2007) In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J Biomed Mater Res Part A 83A(4):999–1008

    CAS  Google Scholar 

  8. Abbott WM, Callow A, Moore W, Rutherford R, Veith F, Weinberg S (1993) Evaluation and performance standards for arterial prostheses. J Vasc Surg 17(4):746–756

    CAS  Google Scholar 

  9. Bujan J, Garcia-Honduvilla N, Bellon JM (2004) Engineering conduits to resemble natural vascular tissue. Biotechnol Appl Biochem 39:17–27

    CAS  Google Scholar 

  10. Gumpenberger T, Heitz J, Bauerle D, Kahr H, Graz I, Romanin C, Svorcik V, Leisch F (2003) Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene. Biomaterials 24(28):5139–5144

    CAS  Google Scholar 

  11. Xue L, Greisler HP (2003) Biomaterials in the development and future of vascular grafts. J Vasc Surg 37(2):472–480

    Google Scholar 

  12. Chlupac J, Filova E, Bacakova L (2009) Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res 58:S119–S139

    Google Scholar 

  13. McClure MJ, Wolfe PS, Rodriguez IA, Bowlin GL (2011) Bioengineered vascular grafts: improving vascular tissue engineering through scaffold design. J Drug Deliv Sci Technol 21(3):211–227

    CAS  Google Scholar 

  14. Boyce ST, Lalley AL (2018) Tissue engineering of skin and regenerative medicine for wound care. Burns Trauma 6(1):4–14

    Google Scholar 

  15. Jia W, Li M, Kang L, Gu G, Guo Z, Chen Z (2019) Fabrication and comprehensive characterization of biomimetic extracellular matrix electrospun scaffold for vascular tissue engineering applications. J Mater Sci 54(15):10871–10883. https://doi.org/10.1007/s10853-019-03667-6

    Article  CAS  Google Scholar 

  16. Thanh Tam T, Hamid ZAA, Ngoc Thien L, Cheong KY, Todo M (2020) Development and mechanical characterization of bilayer tubular scaffolds for vascular tissue engineering applications. J Mater Sci 55(6):2516–2529. https://doi.org/10.1007/s10853-019-04159-3

    Article  CAS  Google Scholar 

  17. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59(14):1413–1433

    CAS  Google Scholar 

  18. Hu J, Sun X, Ma H, Xie C, Chen YE, Ma PX (2010) Porous nanofibrous PLLA scaffolds for vascular tissue engineering. Biomaterials 31(31):7971–7977

    CAS  Google Scholar 

  19. Liu Y, Jiang C, Li S, Hu Q (2016) Composite vascular scaffold combining electrospun fibers and physically-crosslinked hydrogel with copper wire-induced grooves structure. J Mech Behav Biomed Mater 61:12–25

    CAS  Google Scholar 

  20. O’Brien CM, Holmes B, Faucett S, Zhang LG (2015) Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration. Tissue Eng B Rev 21(1):103–114

    Google Scholar 

  21. Qiu K, Chen B, Nie W, Zhou X, Feng W, Wang W, Chen L, Mo X et al (2016) Electrophoretic deposition of dexamethasone-loaded mesoporous silica nanoparticles onto poly (L-lactic acid)/poly (ε-caprolactone) composite scaffold for bone tissue engineering. ACS Appl Mater Interfaces 8(6):4137–4148

    CAS  Google Scholar 

  22. Norouzi SK, Shamloo A (2019) Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods. Mater Sci Eng C Mater Biol Appl 94:1067–1076

    CAS  Google Scholar 

  23. Shie M-Y, Chang W-C, Wei L-J, Huang Y-H, Chen C-H, Shih C-T, Chen Y-W, Shen Y-F (2017) 3D printing of cytocompatible water-based light-cured polyurethane with hyaluronic acid for cartilage tissue engineering applications. Materials 10(2):136–149

    Google Scholar 

  24. Lei D, Yang Y, Liu Z, Yang B, Gong W, Chen S, Wang S, Sun L et al (2019) 3D printing of biomimetic vasculature for tissue regeneration. Mater Horizons 6(6):1197–1206

    CAS  Google Scholar 

  25. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006

    CAS  Google Scholar 

  26. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621

    CAS  Google Scholar 

  27. Soffer L, Wang X, Zhang X, Kluge J, Dorfmann L, Kaplan DL, Leisk G (2008) Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J Biomater Sci Polym Ed 19(5):653–664

    CAS  Google Scholar 

  28. Muylaert DEP, van Almen GC, Talacua H, Fledderus JO, Kluin J, Hendrikse SIS, van Dongen JLJ, Sijbesma E et al (2016) Early in situ cellularization of a supramolecular vascular graft is modified by synthetic stromal cell-derived factor-1 alpha derived peptides. Biomaterials 76:187–195

    CAS  Google Scholar 

  29. Wu T, Huang C, Li D, Yin A, Liu W, Wang J, Chen J, Ei-Hamshary H et al (2015) A multi-layered vascular scaffold with symmetrical structure by bi-directional gradient electrospinning. Colloid Surf B Biointerfaces 133:179–188

    CAS  Google Scholar 

  30. Wang Y, Shi H, Qiao J, Tian Y, Wu M, Zhang W, Lin Y, Niu Z et al (2014) Electrospun tubular scaffold with circumferentially aligned nanofibers for regulating smooth muscle cell growth. ACS Appl Mater Interfaces 6(4):2958–2962

    CAS  Google Scholar 

  31. Guo H-F, Dai W-W, Qian D-H, Qin Z-X, Lei Y, Hou X-Y, Wen C (2017) A simply prepared small-diameter artificial blood vessel that promotes in situ endothelialization. Acta Biomater 54:107–116

    CAS  Google Scholar 

  32. Badhe RV, Bijukumar D, Chejara DR, Mabrouk M, Choonara YE, Kumar P, du Toit LC, Kondiah PPD et al (2017) A composite chitosan-gelatin bi-layered, biomimetic macroporous scaffold for blood vessel tissue engineering. Carbohydr Polym 157:1215–1225

    CAS  Google Scholar 

  33. Ye L, Cao J, Chen L, Geng X, Zhang A-Y, Guo L-R, Gu Y-Q, Feng Z-G (2015) The fabrication of double layer tubular vascular tissue engineering scaffold via coaxial electrospinning and its 3D cell coculture. J Biomed Mater Res Part A 103(12):3863–3871

    CAS  Google Scholar 

  34. Kharazi AZ, Atari M, Vatankhah E, Javanmard SH (2018) A nanofibrous bilayered scaffold for tissue engineering of small-diameter blood vessels. Polym Adv Technol 29(12):3151–3158

    CAS  Google Scholar 

  35. Jirofti N, Mohebbi-Kalhori D, Samimi A, Hadjizadeh A, Kazemzadeh GH (2018) Small-diameter vascular graft using co-electrospun composite PCL/PU nanofibers. Biomed Mater 13(5):73–109

    Google Scholar 

  36. Jia L, Prabhakaran MP, Qin X, Ramakrishna S (2014) Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers. J Biomater Appl 29(3):364–377

    Google Scholar 

  37. Croisier F, Atanasova G, Poumay Y, Jerome C (2014) Polysaccharide-coated PCL nanofibers for wound dressing applications. Adv Healthcare Mater 3(12):2032–2039

    CAS  Google Scholar 

  38. He J, Qin Y, Cui S, Gao Y, Wang S (2011) Structure and properties of novel electrospun tussah silk fibroin/poly(lactic acid) composite nanofibers. J Mater Sci 46(9):2938–2946. https://doi.org/10.1007/s10853-010-5169-x

    Article  CAS  Google Scholar 

  39. He J, Zhou Y, Qi K, Wang L, Li P, Cui S (2013) Continuous twisted nanofiber yarns fabricated by double conjugate electrospinning. Fiber Polym 14(11):1857–1863

    CAS  Google Scholar 

  40. Shao W, He J, Han Q, Sang F, Wang Q, Chen L, Cui S, Ding B (2016) A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 67:599–610

    CAS  Google Scholar 

  41. Gauvin R, Guillemette M, Galbraith T, Bourget J-M, Larouche D, Marcoux H, Aube D, Hayward C et al (2011) Mechanical properties of tissue-engineered vascular constructs produced using arterial or venous cells. Tissue Eng A 17(15–16):2049–2059

    Google Scholar 

  42. Shao W, He J, Sang F, Wang Q, Chen L, Cui S, Ding B (2016) Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide. Mater Sci Eng C Mater Biol Appl 62:823–834

    CAS  Google Scholar 

  43. Wang S, Tomas H, Shi X (2013) Electrospun laponite-doped poly(lactic-co-glycolic acid) nanofibers for osteogenic differentiation of human mesenchymal stem cells. J Control Release 172(1):E139–E139

    CAS  Google Scholar 

  44. Freddi G, Monti P, Nagura M, Gotoh Y, Tsukada M (1997) Structure and molecular conformation of tussah silk fibroin films: effect of heat treatment. J Polym Sci Pt B Polym Phys 35(5):841–847

    CAS  Google Scholar 

  45. Konig G, McAllister TN, Dusserre N, Garrido SA, Iyican C, Marini A, Fiorillo A, Avila H et al (2009) Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30(8):1542–1550

    CAS  Google Scholar 

  46. Wise SG, Byrom MJ, Waterhouse A, Bannon PG, Weiss AS, MKC Ng (2011) A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater 7(3):295–303

    Google Scholar 

  47. Wang H, Feng Y, An B, Zhang W, Sun M, Fang Z, Yuan W, Khan M (2012) Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering. J Mater Sci Mater Med 23(6):1499–1510. https://doi.org/10.1007/s10856-012-4613-7

    Article  CAS  Google Scholar 

  48. Lee JH, Lee SK, Khang G, Lee HB (2000) The effect of fluid sheer stress on endothelial cell adhesiveness to polymer surfaces with wettability gradient. J Colloid Interface Sci 230(1):84–90

    CAS  Google Scholar 

  49. Qi R, Cao X, Shen M, Guo R, Yu J, Shi X (2012) Biocompatibility of electrospun halloysite nanotube-doped poly(lactic-co-glycolic acid) composite nanofibers. J Biomater Sci Polym Ed 23(1–4):299–313

    CAS  Google Scholar 

  50. Woo KM, Seo J, Zhang R, Ma PX (2007) Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials 28(16):2622–2630

    CAS  Google Scholar 

  51. Shao W, He J, Sang F, Ding B, Chen L, Cui S, Li K, Han Q et al (2016) Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 58:342–351

    CAS  Google Scholar 

  52. Laco F, Grant MH, Black RA (2013) Collagen-nanofiber hydrogel composites promote contact guidance of human lymphatic microvascular endothelial cells and directed capillary tube formation. J Biomed Mater Res Part A 101(6):1787–1799

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 51803244) and Key Scientific and Technological Research Projects in Henan Provinces (Grant Nos. 182102310862 and 182102210127). Apparel Council Scientific and Technological Guiding Projects (Grant Nos. 2018018 and 2017036), Key Scientific Research Projects of Higher Education Institutions in Henan Province (Grant Nos. 19B540001 and 18A540002), and Youth talent support project of Henan Province of China (2020HYTP032) are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

FL and WS conceived and designed the experiment. XL and CL performed the experiments. XL and ML designed the electrospinning devices and conducted SEM inspection. XL and KO contributed to data analysis about cell behavior. KW and FL contributed to data analysis about mechanical properties. XL wrote the paper.

Corresponding authors

Correspondence to Weili Shao or Jianxin He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2020_4510_MOESM1_ESM.doc

Illustration of the method used to measure tensile properties. SEM image, Highly magnified SEM image, and Fiber diameter distribution of PLCL nanofibers and PLCL/TSF nanofibers. Schematic diagram of traditional nanofiber vascular scaffold and core-spun yarn nanofiber vascular scaffold. (DOC 2702 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Liao, X., Liu, C. et al. Poly(l-lactide-co-caprolactone)/tussah silk fibroin nanofiber vascular scaffolds with small diameter fabricated by core-spun electrospinning technology. J Mater Sci 55, 7106–7119 (2020). https://doi.org/10.1007/s10853-020-04510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04510-z

Navigation