Skip to main content
Log in

Nano-encapsulated n-nonadecane using vinyl copolymer shell for thermal energy storage medium

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This study is focused on the preparation and characterisation of n-nonadecane-vinyl copolymer shell nanocapsules for thermal energy storage medium. The n-nonadecane nanocapsules were prepared by a one-step miniemulsion in situ polymerisation method. n-Nonadecane was used as a core while styrene (St) and methylmethacrylate (MMA) was used as a vinyl copolymer shell. The Fourier transform infrared results confirmed that n-nonadecane nanocapsules were successfully synthesised. Morphological characteristic analysis indicates that these nnonadecane nanocapsules that were prepared using St/MMA (4:1) have a spherical shape and a narrow particle size distribution, with an average diameter of 160±11 nm. The maximum encapsulation ratio for n-nonadecane nanocapsules is 45.8 wt%. The DSC result of pure n-nonadecane and n-nonadecane nanocapsules exhibits two different peaks, which are related to their carbon numbers. The temperature and latent heat of melting and freezing of the n-nonadecane nanocapsules were determined to be 33.1 °C, 76.9 J/g and 30.2 °C, 82.0 J/g, respectively. Moreover, n-nonadecane nanocapsules exhibit good thermal and chemical stability, even after 1000 cycles of a thermal cycling test. Based on all of the results, it can be concluded that the n-nonadecane nanocapsules exhibit better energy storage and have good potential for buildings, textiles or other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Zhengguo, G. Shi, S. Wang, X. Fang, and X. Liu, Renew. Energy, 50, 670 (2013).

    Article  Google Scholar 

  2. M. M. Farid, A. M. Kudhair, A. A. K. Razack, and S. Al-Hallaj, Energy Convers. Manag., 45, 1597 (2004).

    Article  CAS  Google Scholar 

  3. L. Bayés-Garcí, L. Ventol, R. Cordobilla, R. Benages, T. Calvet, and M. A. Cuaves-Diarte, Sol. Energy Mater. Sol. Cells, 94, 1235 (2010).

    Article  Google Scholar 

  4. S. Ma, G. Song, W. Li, P. Fan, and G. Tang, Sol. Energy Mater. Sol. Cells, 94, 1643 (2010).

    Article  CAS  Google Scholar 

  5. Y. P. Zhang, G. B. Zhou, K. P. Lin, Q. L. Zhang, and H. F. Di, Build. Environ., 42, 2197 (2007).

    Article  Google Scholar 

  6. A. M Khudhair and M. M Farid, Energy Convers. Manag., 45, 263 (2004).

    Article  CAS  Google Scholar 

  7. Z.-H Chen, F. Yu, X.-R. Zeng, and Z.-G. Zhang, Appl. Energy, 91, 7 (2012).

    Article  CAS  Google Scholar 

  8. A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, Renew. Sustain. Energy Rev., 13, 318 (2009).

    Article  CAS  Google Scholar 

  9. B. Zalba, J. M. Marín, and L. F. Cabeza, Appl. Therm. Eng., 23, 251 (2003).

    Article  CAS  Google Scholar 

  10. V. V. Tyagi, S. C. Kaushik, S. K. Tyagi, and T. Akiyama, Renew. Sustain. Energy Rev., 15, 1373 (2011).

    Article  CAS  Google Scholar 

  11. L. Pan, Q. H. Tao, S. D Zhang, S. S. Wang, J. Zhang, S. H. Wang, Z. Y. Wang, and Z. P. Zhang, Sol. Energy Mater. Sol. Cells, 98, 66 (2012).

    Article  CAS  Google Scholar 

  12. C. Alkan and A Sari, Solar Energy, 82, 118 (2008).

    Article  CAS  Google Scholar 

  13. K. P. Chen, X. J. Yu, C. R. Tian, and J. H. Wang, Energy Convers. Manag., 77, 13 (2014).

    Article  CAS  Google Scholar 

  14. Y. Cai, Y. Hu, L. Song, Q. Kong, R. Yang, Y. Zhang, Z. Chen, and W. Fan, Energy Convers. Manag., 48, 462 (2007).

    Article  CAS  Google Scholar 

  15. X. Qiu, W. Li, G. Song, X. Chu, and G. Tang, Sol. Energy Mater. Sol. Cells, 98, 283 (2012).

    Article  CAS  Google Scholar 

  16. E. Y. Kim and H. D. Kim, J. Appl. Polym. Sci., 95, 1596 (2005).

    Article  Google Scholar 

  17. Y. Fang, H. Yu, W. Wan, X. Gao, and Z. Zhang, Energy Convers. Manag., 76, 430 (2013).

    Article  CAS  Google Scholar 

  18. Y. Wang, Y. Zhang, T. D. Xia, W. J. Zhao, and W. H. Yang, Sol. Energy Mater. Sol. Cells, 120, 481 (2014).

    Article  CAS  Google Scholar 

  19. A. Shukla, D. Buddhi, and R. L. Sawhney, Renew. Sustain. Energy Rev., 13, 2119 (2009).

    Article  CAS  Google Scholar 

  20. S. Mondal, Appl. Therm. Eng., 28, 1536 (2006).

    Article  Google Scholar 

  21. P. Sánchez, M. V. Sánchez-Fernandez, A. Romero, J. F. Rodríguez, and L. Sánchez-Silva, Themochim. Acta, 498, 16 (2010).

    Article  Google Scholar 

  22. H. H. Orturk, Energy Convers. Manag., 46, 1523 (2005).

    Article  Google Scholar 

  23. X. Lan, Z. Tan, G. Zou, I. Sun, and T. Zhang, Chin. J. Chem., 22, 441 (2004).

    Google Scholar 

  24. H. Z. Zhang and X. D. Wang, Colloids Surf. A: Physicochem. Eng. Asp., 332, 129 (2009).

    Article  CAS  Google Scholar 

  25. G. H. Zhang and C. Y. Zhao, Renew. Energy, 36, 2959 (2011).

    Article  CAS  Google Scholar 

  26. M. Akgun, O. Aydin, and K. Kaygusuz, Energy Convers. Manag., 48, 669 (2007).

    Article  Google Scholar 

  27. A. Pasupathy, R. Velraj, and R. V. Seeniraj, Renew. Sustain. Energy Rev., 12, 39 (2008).

    Article  Google Scholar 

  28. M. N. A Hawlander, M. S. Uddin, and M. M. Khin, Appl. Energy, 74, 8195 (2003).

    Google Scholar 

  29. Y. Fang, S. Kuang, X. Gao, and Z. Zhang, Energy Convers. Manag., 49, 3704 (2008).

    Article  CAS  Google Scholar 

  30. Y. Fang, S. Kuang, X. Gao, and Z. Zhang, Appl. Phys., 42, 1 (2009).

    CAS  Google Scholar 

  31. G. Fang, Z. Chen, and H. Li, Chem. Eng. J., 163, 154 (2010).

    Article  CAS  Google Scholar 

  32. G. H. Zhang, S. A. F. Bon, and C. Y. Zhao, Solar Energy, 86, 1149 (2012).

    Article  CAS  Google Scholar 

  33. X. Qiu, W. Li, G. Song, X. Chu, and G. Tang, Energy, 46, 188 (1012).

  34. S. H. Lee, S. J. Yoon, Y. G. Kim, Y. C. Choi, J. H. Kim, and J. G. Lee, Korean J. Chem. Eng., 24, 332 (2007).

    Article  CAS  Google Scholar 

  35. L. Wei, X.-X. Zhang, X.-C. Wang, and J.-J. Niu, Mater. Chem. Phys., 106, 437 (2007).

    Article  Google Scholar 

  36. E. Onder, N. Sarier, and E. Cimen, Thermochim. Acta, 467, 63 (2008).

    Article  CAS  Google Scholar 

  37. L. Sánchez, P. Sánchez, and A. de Lucas, Colloid Polym. Sci., 285, 1377 (2007).

    Article  Google Scholar 

  38. M. Khosrojerdi and M. Mortazavi, J. Therm. Anal. Calorim., 114, 1111 (2013).

    Article  CAS  Google Scholar 

  39. H. Li, X. Liu, and G. Fang, Energy Build., 42, 1661 (2010).

    Article  Google Scholar 

  40. Y. Wang, Y. Zhang, T. D. Xia, W. Zhao, and W. H. Yang, Sol. Energy Mater. Sol. Cells, 120, 481 (2014).

    Article  CAS  Google Scholar 

  41. T. S. Latibari, M. Mehrali, M. Mehrali, T. M. I. Mahlia, and H. S. C. Metselaar, Energy, 61, 664 (2013).

    Article  Google Scholar 

  42. W. Wu, H. Bostanci, L. C. Chow, S. J. Ding, Y. Hong, M. Su, J. P. Kizito, L. Gschwender, and C. E. Snyder, Int. J. Heat Mass Transf., 54, 2715 (2011).

    Article  CAS  Google Scholar 

  43. M. Fuesanta, U. Paiphansiri, M. D. Romeo-Sánchez, C. Guillem, A. M. López-Buendía, and K. Landfester, Thermochim. Acta, 565, 95 (2013).

    Article  Google Scholar 

  44. S. Theisinger, K. Schoeller, B. Osborn, M. Sarkar, and K. Landfester, Macromol. Chem. Phys., 210, 411 (2009).

    Article  CAS  Google Scholar 

  45. C. Alkan, A. Sari, and A. Karaipekli, Energy Convers. Manag., 52, 687 (2011).

    Article  CAS  Google Scholar 

  46. L. J. Wang and D. Meng, Appl. Energy, 87, 2660 (2010).

    Article  CAS  Google Scholar 

  47. J. Su, L. Wang, and L. Ren, J. Appl. Polym. Sci., 102, 4996 (2006).

    Article  CAS  Google Scholar 

  48. L. Sánchez, J. Tsavalas, D. Sundberg, P. Sánchez, and J. F. Rodriguez, Ind. Eng. Chem. Res., 49, 12204 (2010).

    Article  Google Scholar 

  49. F. Tiarks, K. Landfaster, and M. Antonietti, Langmuir, 17, 908 (2001).

    Article  CAS  Google Scholar 

  50. L. Sánchez-Silva, J. F. Rodríguez, A. Romero, A. M. Borreguero, M. Carmona, and P. Sánchez, Chem. Eng. J., 157, 216 (2010).

    Article  Google Scholar 

  51. A. M. Borreguero, J. L. Valverde, J. F. Rogríguez, A. H. Barber, J. J. Cubillo, and M. Carmona, Chem. Eng. J., 166, 384 (2011).

    Article  CAS  Google Scholar 

  52. K. Tumirah, M. Z. Hussein, Z. Zulkarnain, and R. Rafeadah, Energy, 66, 881 (2014).

    Article  CAS  Google Scholar 

  53. H. Kopsch, Thermal Methods in Petroleum Analysis, VCH Publisher, New York, 1995.

    Book  Google Scholar 

  54. M. Xiao, B. Feng, and K. Gong, Energy Convers. Manag., 43, 103 (2002).

    Article  CAS  Google Scholar 

  55. B. N. Jang and C. A. Wilkie, Polymer, 46, 2933 (2005).

    Article  CAS  Google Scholar 

  56. H. H. G. Jellinek and M. D. Luh, Die Makromolekulare Chemie, 89, 102 (1968).

    Google Scholar 

  57. A. Sharma, S. D. Sharma, and D. Buddhi, Energy Convers. Manag., 43, 1923 (2002).

    Article  CAS  Google Scholar 

  58. L. Shilei, Z. Neng, and F. Guohui, Energy Build., 38, 708 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Zobir Hussein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadiran, T., Hussein, M.Z., Zainal, Z. et al. Nano-encapsulated n-nonadecane using vinyl copolymer shell for thermal energy storage medium. Macromol. Res. 23, 658–669 (2015). https://doi.org/10.1007/s13233-015-3088-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3088-z

Keywords

Navigation