Skip to main content
Log in

Thermal characterization and analysis of n-octadecane microcapsules modified with MnO2 particles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

MnO2 particles were prepared by a hydrothermal method and characterized via the SEM imaging, XRD and FTIR analyses, showing that the individual particles were spherical and less than 1.0 μm in diameter but were clustered in α type crystal. The particles were then added into the n-octadecane to form a new class of phase-change energy storage composites. After that, the composite powder was wrapped into polyethylene by the suspension polymerization, forming microcapsules with an average size 4.9–5.6 μm in diameter. Eventually the morphology and thermal properties of the microcapsules were analyzed. No forming of chemical bond between the core material and the shell material was found during the microcapsule synthesis process. The latent heat and encapsulation efficiency of the microcapsules with addition of 0.5 mass% MnO2 particles in the n-octadecane were measured at 107.5 ± 1.3 J g−1 and 95.3 ± 1.2%, respectively, which are higher than the microcapsules with pure n-octadecane, measured at 84.9 ± 1.2 J g−1 and 75.3 ± 1.4%, respectively. The thermal conductivity of the n-octadecane microcapsules modified with 0.5 mass% MnO2 was enhanced by about 103.3% at 15.0 °C compared with the microcapsules without MnO2. Thermogravimetric and thermal cycling studies showed that the modified new microcapsules had good thermal stability. Such a modification provided an effective way to prepare phase-change energy storage microcapsules with better thermal properties and higher encapsulation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Salunkhe PB, Shembekar PS. A review on effect of phase change material encapsulation on the thermal performance of a system. Renew Sustain Energy Rev. 2012;16(8):5603–16.

    Article  CAS  Google Scholar 

  2. Boukani NH, Dadvand A, Chamkha JA. Melting of a nano-enhanced phase change material (NePCM) in partially-filled horizontal elliptical capsules with different aspect ratios. Int J Mech Sci. 2018;149:164–77.

    Article  Google Scholar 

  3. Joulin A, Zalewski L, Lassue S, Naji H. Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material. Appl Therm Eng. 2014;66(1–2):171–80.

    Article  CAS  Google Scholar 

  4. Cao VD, Shima P, Carlos SB, Rodriguez Juan F, Manuel C, Nodar AM. Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications. Energy Convers Manag. 2017;133:56–66.

    Article  CAS  Google Scholar 

  5. Behzadi S, Farid M. Experimental and numerical investigations on the effect of using phase change materials for energy conservation in residential buildings. Hvacr Res. 2011;17(3):366–76.

    Article  Google Scholar 

  6. Ni HY, Zhu XQ, Hu J, Bie Y, Chen L, Chen LM. Investigation progress of phase change building materials. Appl Mech Mater. 2014;672–674:1828–32.

    Article  Google Scholar 

  7. Iqbal K, Sun D, Stylios GK, Lim T, Corne DW. FE analysis of thermal properties of woven fabric constructed by yarn incorporated with microencapsulated phase change materials. Fibers Polym. 2015;16:2497–503.

    Article  CAS  Google Scholar 

  8. Han GGD, Li H, Grossman JC. Optically-controlled long-term storage and release of thermal energy in phase-change materials. Nat Commun. 2017;8(1):1446.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jamekhorshid A, Sadrameli SM, Barzin R, Farid MM. Composite of wood-plastic and micro-encapsulated phase change material (MEPCM) used for thermal energy storage. Appl Therm Eng. 2017;112:82–8.

    Article  CAS  Google Scholar 

  10. Lashgari S, Arabi H, Mahdavian AR, Ambrogi V. Thermal and morphological studies on novel PCM microcapsules containing n-hexadecane as the core in a flexible shell. Appl Energy. 2017;190:612–22.

    Article  CAS  Google Scholar 

  11. Karthikeyan M, Ramachandran T. Review of thermal energy storage of micro- and nanoencapsulated phase change materials. Mater Res Innov. 2014;18(7):541–54.

    Article  CAS  Google Scholar 

  12. Geng X, Li W, Wang Y, Lu J, Wang J, Wang N, Li J, Zhang X. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing. Appl Energy. 2018;217:281–94.

    Article  CAS  Google Scholar 

  13. Jiang F, Wang X, Wu D. Magnetic microencapsulated phase change materials with an organo-silica shell: design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films. Energy. 2016;98:225–39.

    Article  CAS  Google Scholar 

  14. Lashgari S, Reza Mahdavian A, Arabi H, Ambrogi V, Marturano V. Preparation of acrylic PCM microcapsules with dual responsivity to temperature and magnetic field changes. Eur Polym J. 2018;101:18–28.

    Article  CAS  Google Scholar 

  15. Hossein P, Nasrabadi MR, Ali SN, Ghanbar AS, Hassan BT. Experimental study of the thermal properties of microencapsulated palmitic acid composites with CuCO3 shell as thermal energy storage materials. ChemistrySelect. 2019;4(21):6501–5.

    Article  Google Scholar 

  16. Şahan N, Paksoy H. Determining influences of SiO2 encapsulation on thermal energy storage properties of different phase change materials. Sol Energy Mater Sol Cells. 2017;159:1–7.

    Article  Google Scholar 

  17. Liu Z, Zhun Y, Yang T, Qin D, Li S, Zhang G, Fariborz H, Mastani JM. A review on macro-encapsulated phase change material for building envelope applications. Build Environ. 2018;144:281–94.

    Article  Google Scholar 

  18. Xiao S, Wang S, Cheng Z, Xu H. Preparation and characterization of flame-retardant nanoencapsulated phase change materials with poly(methylmethacrylate) shells for thermal energy storage. J Mater Chem A. 2018;36:17519–29.

    Google Scholar 

  19. Sar A, Alkan C, Bilgin C, Bicer A. Preparation, Characterization And Thermal Energy Storage Properties Of Micro/Nano Encapsulated Phase Change Material With Acrylic-Based Polymer. Polym ence Ser B. 2018;60(1):58–68.

    Article  Google Scholar 

  20. Rezvanpour M, Hasanzadeh M, Azizi D, Rezvanpour A, Alizadeh M. Synthesis and characterization of micro-nanoencapsulated n-eicosane with PMMA shell as novel phase change materials for thermal energy storage. Mater Chem Phys. 2018;215:299–304.

    Article  CAS  Google Scholar 

  21. Zhao J, Long J, Du Y, Zhou J, Cao S. Recyclable low-temperature phase change microcapsules for cold storage. J Colloid Interface Sci. 2019;564:286–95.

    Article  PubMed  Google Scholar 

  22. Ahmed H, Mohammad SL, Yasir R. Micro-encapsulated phase change materials: a review of encapsulation, safety and thermal characteristics. Sustainability. 2016;8(10):1046.

    Article  Google Scholar 

  23. Daou I, El-Kaddadi L, Zegaoui O, Asbik M, Zari N. Structural, morphological and thermal properties of novel hybrid-microencapsulated phase change materials based on Fe2O3, ZnO and TiO2 nanoparticles for latent heat thermal energy storage applications. J Energy Storage. 2018;17:84–92.

    Article  Google Scholar 

  24. Li B, Liu T, Hu L, Wang Y, Gao L. Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage. ACS Sustain Chem Eng. 2013;1(3):374–80.

    Article  CAS  Google Scholar 

  25. Sun N, Xiao Z. Paraffin wax-based phase change microencapsulation embedded with silicon nitride nanoparticles for thermal energy storage. J Mater Sci. 2016;51(18):8550–61.

    Article  CAS  Google Scholar 

  26. Jiang X, Luo R, Peng F, Fang Y, Akiyama T, Wang S. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Appl Energy. 2015;137:731–7.

    Article  CAS  Google Scholar 

  27. Neha K, Nagesh K, Srivastava AK, Yogesh S, Varma GD. One-step synthesized mesoporous MnO2@MoS2 nanocomposite for high performance energy storage devices. J Electroanal Chem. 2018;824:226–37.

    Article  Google Scholar 

  28. Yuan L, Lu X, Xiao X, Zhai T, Dai J, Zhang F, Hu B, Wang X, Gong L, Chen J. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano. 2012;6(1):656–61.

    Article  CAS  PubMed  Google Scholar 

  29. Mallakpour S, Abdolmaleki A, Tabebordbar H. Production of PVC/α-MnO2-KH550 nanocomposite films: morphology, thermal, mechanical and Pb (II) adsorption properties. Eur Polym J. 2016;78:141–52.

    Article  CAS  Google Scholar 

  30. Turcaud JA, Morrison K, Berenov A, Alford NM, Cohen LF. Microstructural control and tuning of thermal conductivity in La 0.67Ca0.33MnO3±δ. Scr Mater. 2012;68(7):510–3.

    Article  Google Scholar 

  31. Liang W, Wang L, Zhu H, Pan Y, Sun Z. Enhanced thermal conductivity of phase change material nanocomposites based on MnO2 nanowires and nanotubes for energy storage. Sol Energy Mater Sol Cells. 2018;180:158–67.

    Article  CAS  Google Scholar 

  32. Petersen RR, Knig J, Yue Y. The mechanism of foaming and thermal conductivity of glasses foamed with MnO2. J Non-Cryst Solids. 2015;425:74–82.

    Article  CAS  Google Scholar 

  33. Xu Q, Liu H, Wang X, Wu D. Smart design and construction of nanoflake-like MnO2/SiO2 hierarchical microcapsules containing phase change material for in-situ thermal management of supercapacitors. Energy Convers Manag. 2018;168:311–28.

    Article  Google Scholar 

  34. Yazdimamaghani M, Pourvala T, Motamedi E, Fathi B, Vashaee D, Tayebi L. Synthesis and characterization of encapsulated nanosilica particles with an acrylic copolymer by in situ emulsion polymerization using thermoresponsive nonionic surfactant. Materials. 2013;6(9):3727–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang J, Xie H, Guo Z, Guan L, Li Y. Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Appl Therm Eng. 2014;73(2):1541–7.

    Article  CAS  Google Scholar 

  36. Derya DK, Cinar K, Alper B, Ahmet S, Cemil A. Microencapsulated n-alkane eutectics in polystyrene for solar thermal applications. Sol Energy. 2018;160:32–42.

    Article  Google Scholar 

  37. Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharmacal Res. 2004;27(1):1–12.

    Article  CAS  Google Scholar 

  38. Fang Y, Yu H, Wan W, Gao X, Zhang Z. Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials. Energy Convers Manag. 2013;76:430–6.

    Article  CAS  Google Scholar 

  39. SaNchez-Silva L, Tsavalas J, Sundberg D, SaNchez P, Rodriguez JF. Synthesis and characterization of paraffin wax microcapsules with acrylic-based polymer shells. Ind Eng Chem Res. 2010;49(23):12204–11.

    Article  CAS  Google Scholar 

  40. Fu J, Luo X. A first-principles investigation of α, β, and γ-MnO2 as potential cathode materials in Al-ion batteries. RSC Adv. 2020;10:39895–900.

    Article  CAS  Google Scholar 

  41. Li X, Liu J, Zhao Y, Zhang H, Sun Y. Significance of surface trivalent manganese in the electrocatalytic activity of water oxidation in undoped and doped MnO2 nanowires. Chemcatchem. 2015;7(12):1848–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51776116; 51306108), the Major Program of the National Natural Science Foundation of China (No. 51590902), and Gaoyuan Discipline of Shanghai – Environmental Science and Engineering (Resource Recycling Science and Engineering). Zhixiong Guo is not involved in the aforementioned sponsorship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jifen Wang or Zhixiong Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Wang, J., Xie, H. et al. Thermal characterization and analysis of n-octadecane microcapsules modified with MnO2 particles. J Therm Anal Calorim 147, 2907–2916 (2022). https://doi.org/10.1007/s10973-021-10648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10648-y

Keywords

Navigation