Skip to main content
Log in

Silk fibroin film as an efficient carrier for corneal endothelial cells regeneration

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Tissue engineered corneas are a promising alternative to the limited donor corneas for transplantation. Here, we fabricated a transparent silk fibroin film with varied sericin content — low sericin silk fibroin film (LSS) and high sericin silk fibroin film (HSS) — to evaluate its ability to serve as an efficient carrier for corneal endothelial cells. Both LSS and HSS were prepared from Bombyx mori containing different percentages of sericin −6.25% and 9.83%, respectively. Tissue culture polystyrene was used as a reference substratum. In vitro studies, such as a morphological evaluation, initial attachment, expression of mRNAs and proteins (ZO-1 and Na+/K+-ATPase), were performed using rabbit primary corneal endothelial cells as models on silk fibroin films. Results showed that the corneal endothelial cells grown on as-fabricated LSS and HSS were well-maintained, indicating no effect of the difference in sericin content in the films. However, the HSS displayed better initial cell attachment due to the adhesive properties of sericin. These results demonstrated that rabbit corneal endothelial cells grew well on a silk substratum although the percentage of sericin showed no significant difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. C. Joyce, Prog. Retin. Eye Res., 22, 359 (2003).

    Article  CAS  Google Scholar 

  2. A. L. Sabater, A. Guarnieri, E. M. Espana, W. Li, F. Prósper, and J. Moreno-Montañés, Regen. Med., 8, 183 (2013).

    Article  CAS  Google Scholar 

  3. S. Rayatpisheh, D. E. Heath, A. Shakouri, P. O. Rujitanaroj, S. Y. Chew, and M. B. Chan-Park, Biomaterials, 35, 2713 (2014).

    Article  CAS  Google Scholar 

  4. G. S. L. Peh, K. P. Toh, F. Y. Wu, D. T. Tan, and J. S. Mehta, PLoS ONE, 6, e28310 (2011).

    Article  Google Scholar 

  5. J. S. Choi, E. Y. Kim, M. J. Kim, F. A. Khan, M. Giegengack, R. D'Agostino, T. Criswell, G. Khang, and S. Soker, Cell Transplant., 23, 845 (2014).

    Article  Google Scholar 

  6. N. Shima, M. Kimoto, M. Yamaguchi, and S. Yamagami, Invest. Ophthalmol. Vis. Sci., 52, 8711 (2011).

    Article  CAS  Google Scholar 

  7. M. Nakahara, N. Okumura, E. D. P. Kay, M. Hagiya, K. Imagawa, Y. Hosoda, S. Kinoshita, and N. Koizumi, PLoS ONE, 8, e69009 (2013).

    Article  Google Scholar 

  8. T. M. Lange, T. O. Wood, and B. J. McLaughlin, J. Cataract Refract. Surg., 19, 232 (1993).

    Article  CAS  Google Scholar 

  9. C. K. Joo, W. R. Green, J. S. Pepose, and T. P. Fleming, Graefes Arch. Clin. Exp. Ophthalmol., 238, 174 (2000).

    Article  CAS  Google Scholar 

  10. T. Mimura, S. Yamagami, and S. Yokoo, Invest. Ophthalmol. Vis. Sci., 45, 2992 (2004).

    Article  Google Scholar 

  11. Y. Ishino, Y. Sano, T. Nakamura, C. J. Connon, H. Rigby, N. J. Fullwood, and S. Kinoshita, Invest. Ophthalmol. Vis. Sci., 45, 800 (2004).

    Article  Google Scholar 

  12. J. S. Choi, J. K. Williams, M. Greven, K. A. Walter, P. W. Laber, G. Khang, and S. Soker, Biomaterials, 31, 6738 (2010).

    Article  CAS  Google Scholar 

  13. J. H. Lee, E. Y. Kim, C. J Lee, C. K. Joo, and G. Khang, Int. J. Tissue Regen., 4, 53 (2013).

    Article  CAS  Google Scholar 

  14. R. Capelli, J. J. Amsden, G. Generali, S. Toffanin, V. Benfenati, M. Muccini, D. L. Kaplan, F. G. Omenetto, and R. Zamboni, Org. Electron., 12, 1146 (2011).

    Article  CAS  Google Scholar 

  15. M. Mondal, K. Trivedy, and S. Nirmal Kumar, Caspian J. Env. Sci., 5, 63 (2007).

    Google Scholar 

  16. C. S. Ki, U. H. Park, and H. J. Jin, Macromol. Res., 17, 935 (2009).

    Article  CAS  Google Scholar 

  17. V. Kearns, A. C. MacIntosh, A. Crawford, and P. V. Hatton, Topics in Tissue Engineering, N. Ashammakhi, R. Reis, and F. Chiellini, Eds., University of Oulu, Oulu, 2008, Vol. 4.

  18. B. D. Lawrence, J. K. Marchant, M. A. Pindrus, F. G. Omenetto, and D. L. Kaplan, Biomaterials, 30, 1299 (2009).

    Article  CAS  Google Scholar 

  19. T. V. Chirila, Z. Barnard, Zainuddin, D. G. Harkin, I. R. Schwab, and L. Hirst, Tissue Eng. Part A, 14, 1203 (2008).

    Article  CAS  Google Scholar 

  20. T. V. Chirila, Z. Barnard, Zainuddin, and D. Harkin, Mater. Sci. Forum, 561–565, 1549 (2007).

    Article  Google Scholar 

  21. Y. Wang, H. J. Kim, G. Vunjak-Novakovic, and D. L. Kaplan, Biomaterials, 27, 6064 (2006).

    Article  CAS  Google Scholar 

  22. K. Tsubouchi, Y. Igarashi, Y. Takasu, and H. Yamada, Biosci. Biotechnol. Biochem., 69, 403 (2005).

    Article  CAS  Google Scholar 

  23. J. Liu, B. D. Lawrence, A. Liu, I. R. Schwab, L. A. Oliveira, and M. I. Rosenblatt, Invest. Ophthalmol. Vis. Sci., 53, 4130 (2012).

    Article  CAS  Google Scholar 

  24. H. Yoon, E. Y. Kim, H. Kim, C. H. Park, C. K. Joo, and G. Khang, Macromol. Res., 22, 297 (2014).

    Article  CAS  Google Scholar 

  25. H. L. Kim, H. Yoo, H. J. Park, Y. G. Kim, D. Lee, Y. S. Kang, and G. Khang, Polym. Korea, 35, 7 (2011).

    CAS  Google Scholar 

  26. E. H. Jo, S. J. Kim, S. J. Cho, G. Y. Lee, O. Y. Kim, E. Y. Lee, W. H. Cho, D. Lee, and G. Khang, Polym. Korea, 35, 289 (2011).

    CAS  Google Scholar 

  27. J. Lee, S. Lee, S. Kim, K. Kim, Y. Kim, J. Song, D. Lee, and G. Khang, Polym Korea, 37, 127 (2013).

    Article  CAS  Google Scholar 

  28. J. Folkman and A. Moscona, Nature, 273, 345 (1978).

    Article  CAS  Google Scholar 

  29. Z. A. Ben, S. R. Farmer, and S. Penman, Cell, 21, 365 (1980).

    Article  Google Scholar 

  30. M. Yamamoto and Y. Tabata, Int. J. Tissue Regen., 4, 36 (2013).

    Google Scholar 

  31. Y. Kobayashi, M. Hirose, Y. Sogo, K. Cheng, A. Ito, and A. Yamazaki, Int. J. Tissue Regen., 5, 9 (2014).

    Google Scholar 

  32. S. Koo, R. Muhammad, G. S. L. Peh, J. S. Mehta, and E. K. F. Yim, Acta Biomater., 10, 1975 (2014).

    Article  CAS  Google Scholar 

  33. N. C. Joyce, D. L. Harris, and D. M. Mello, Invest. Ophthalmol. Vis. Sci., 43, 2152 (2002).

    Google Scholar 

  34. A. Okumura, M. Goto, T. Goto, M. Yoshinari, S. Masuko, T. Katsuki, and T. Tanaka, Biomaterials, 22, 2263 (2001).

    Article  CAS  Google Scholar 

  35. H. F. Edelhauser, Invest. Ophthalmol. Vis. Sci., 47, 1755 (2006).

    Article  Google Scholar 

  36. A. S. Verkman, J. Anat., 200, 617 (2002).

    Article  CAS  Google Scholar 

  37. R. W. Yee, D. H. Geroski, M. Matsuda, E. J. Champeau, L. A. Meyer, and H. F. Edelhauser, Invest. Ophthalmol. Vis. Sci., 26, 1191 (1985).

    CAS  Google Scholar 

  38. M. J. Sampson, R. S. Lovell, D. B Davison, and W. J. Craigen, Genomics, 36, 192 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilson Khang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.Y., Tripathy, N., Park, J.Y. et al. Silk fibroin film as an efficient carrier for corneal endothelial cells regeneration. Macromol. Res. 23, 189–195 (2015). https://doi.org/10.1007/s13233-015-3027-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3027-z

Keywords

Navigation