Skip to main content
Log in

Implications of passivated conductive fillers on dielectric behavior of nanocomposites

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In order to fabricate a flexible composite of large dielectric constant, the preparation of dielectric fillers employing single-walled carbon nanotubes (SWNT) passivated with alkyl pyrenes having different alkyl chain lengths and their mixing with a polymer matrix were investigated. When the lengths of alkyl chains (n) of alkyl pyrene for SWNT passivation were varied from 0 to 4, dielectric constant of the composite were almost identical (K < 25). However, further increase regarding the length of alkyl chains in alkyl pyrene (n=12) dramatically increased the dielectric constant of the epoxy composite (K > 200) without loss of flexibility, despite the concentration of passivated SWNTs being as low as 0.04 wt% in the composite. Especially, highly suppressed dielectric loss was observed for the passivated SWNT/epoxy composite with alkyl pyrene containing an alkyl chain length of 12, which made it an ideal candidate for the embedded flexible capacitor prerequisite to flexible electronics. These dielectric behaviors were attributed to an effective debundling and partially aligned dispersion of SWNTs in the matrix, when alkyl chains with optimum length were employed in the alkyl pyrenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Rao and C. P. Wong, J. Appl. Polym. Sci., 92, 2228 (2004).

    Article  CAS  Google Scholar 

  2. R. Popielarz, C. K. Chiang, R. Nozaki, and J. Obrzut, Macromolecules, 34, 5910 (2001).

    Article  CAS  Google Scholar 

  3. K. Swapan and R. R. T. Bhattacharya, J. Mater. Sci. Mater. Electron., 11, 253 (2000).

    Article  Google Scholar 

  4. Y. Bai, Z.-Y. Cheng, V. Bharti, H. S. Xu, and Q. M. Zhang, Appl. Phys. Lett., 76, 3804 (2000).

    Article  CAS  Google Scholar 

  5. L. Wang and Z.-M. Dang, Appl. Phys. Lett., 87, 42903 (2005).

    Article  Google Scholar 

  6. Q. M. Zhang, L. Hengfeng, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, and C. Huang, Nature, 419, 284 (2002).

    Article  CAS  Google Scholar 

  7. J.-W. Wang, Q.-D. Shen, C.-Z. Yang, and Q.-M. Zhang, Macromolecules, 37, 2294 (2004).

    Article  CAS  Google Scholar 

  8. C. Huang, Q. M. Zhang, and J. Su, Appl. Phys. Lett., 82, 3502 (2003).

    Article  CAS  Google Scholar 

  9. J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, Polymer, 44, 5893 (2003).

    Article  CAS  Google Scholar 

  10. B. E. Kilbride, J. F. J. N. C., P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, and W. J. Blau, J. Appl. Phys., 92, 4024 (2002).

    Article  CAS  Google Scholar 

  11. P. M. Ajayan, Chem. Rev., 99, 1787 (1999).

    Article  CAS  Google Scholar 

  12. S. Bose, R. A. Khare, and P. Moldenaers, Polymer, 51, 975 (2010).

    Article  CAS  Google Scholar 

  13. H. Li, B. Zhou, Y. Lin, L. Gu, W. Wang, K. A. S. Fernando, S. Kumar, L. F. Allard, and Y. P. Sun, J. Am. Chem. Soc., 126, 1014 (2004).

    Article  CAS  Google Scholar 

  14. D. M. Guldi, G. M. A. Rahman, N. Jux, N. Tagmatarchis, and M. Prato, Angew. Chem. Int. Ed., 43, 5526 (2004).

    Article  CAS  Google Scholar 

  15. S. C. Hong, J. E. Shin, H. J. Choi, H. H. Gong, K. Kim, and N.-G. Park, Ind. Eng. Chem. Res., 49, 11393 (2010).

    Article  CAS  Google Scholar 

  16. I. H. Choi, M. Park, S.-S. Lee, and S. C. Hong, Eur. Polym. J., 44, 3087 (2008).

    Article  CAS  Google Scholar 

  17. G. J. Bahun and A. Adronov, J. Polym. Sci. Part A: Polym. Chem., 48, 1016 (2010).

    Article  CAS  Google Scholar 

  18. Y. Yan, J. Cui, P. Poetschke, and B. Voit, Carbon, 48, 2603 (2010).

    Article  CAS  Google Scholar 

  19. R. J. Chen, Y. Zhang, D. Wang, and H. Dai, J. Am. Chem. Soc., 123, 3838 (2001).

    Article  CAS  Google Scholar 

  20. C. Ehli, G. M. A. Rahman, N. Jux, D. Balbinot, D. M. Guldi, F. Paolucci, M. Marcaccio, D. Paolucci, M. Melle-Franco, F. Zerbetto, S. Campidelli, and M. Prato, J. Am. Chem. Soc., 128, 11222 (2006).

    Article  CAS  Google Scholar 

  21. H. Paloniemi, T. Aaritalo, T. Laiho, H. Liuke, N. Kocharova, K. Haapakka, F. Terzi, R. Seeber, and J. Lukkari, J. Phys. Chem. B, 109, 8634 (2005).

    Article  CAS  Google Scholar 

  22. J. Zhang, J. K. Lee, Y. Wu, and R. W. Murray, Nano Lett., 3, 403 (2003).

    Article  CAS  Google Scholar 

  23. S. G. Stepanian, V. A. Karachevtsev, A. Y. Glamazda, U. Dettlaff-Weglikowska, and L. Adamowicz, Mol. Phys., 101, 2609 (2003).

    Article  CAS  Google Scholar 

  24. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley, Chem. Phys. Lett., 313, 91 (1999).

    Article  CAS  Google Scholar 

  25. M. E. Itkis, D. E. Perea, S. Niyogi, S. M. Rickard, M. A. Hamon, H. Hu, B. Zhao, and R. C. Haddon, Nano Lett., 3, 309 (2003).

    Article  CAS  Google Scholar 

  26. S. Lou, R. Daussin, S. Cuenot, A.-S. Duwez, C. Pagnoulle, C. Detrembleur, C. Bailly, and R. Jerome, Chem. Mater., 16, 4005 (2004).

    Article  CAS  Google Scholar 

  27. F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer, and A. P. H. J. Schenning, Chem. Rev., 105, 1491 (2005).

    Article  CAS  Google Scholar 

  28. R. Shvartzman-Cohen, Y. Levi-Kalisman, E. Nativ-Roth, and R. Yerushalmi-Rozen, Langmuir, 20, 6085 (2004).

    Article  CAS  Google Scholar 

  29. N. Nakashima, Y. Tomonari, and H. Murakami, Chem. Lett., 638 (2002).

  30. V. Zorbas, A. Ortiz-Acevedo, A. B. Dalton, M. M. Yoshida, G. R. Dieckmann, R. K. Draper, R. H. Baughman, M. Jose-Yacaman, and I. H. Musselman, J. Am. Chem. Soc., 126, 7222 (2004).

    Article  CAS  Google Scholar 

  31. S. Zhang, N. Zhang, C. Huang, K. Ren, and Q. M. Zhang, Adv. Mater., 17, 1897 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S.C., Park, HJ., Chang, J.Y. et al. Implications of passivated conductive fillers on dielectric behavior of nanocomposites. Macromol. Res. 20, 1191–1196 (2012). https://doi.org/10.1007/s13233-012-0199-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0199-7

Keywords

Navigation