Skip to main content

Advertisement

Log in

Flexible Nanocomposites Based on P(VDF-TrFE) Matrix and MXene 2-D Fillers with Low Percolation Threshold and High Dielectric Constant

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, P(VDF-TrFE)-based nanocomposites with high dielectric constant were fabricated by using MXene as a two-dimensional (2-D) filler. The produced nanocomposites were flexible and exhibit a low percolation threshold of 11.96 wt.% while their dielectric constant exceeds 2000 at a frequency of 100 Hz. P(VDF-TrFE)/MXene dielectric nanocomposites with 10 wt.% of 2-D filler exhibit a high dielectric constant of more than 1500 at 100 Hz associated with a dielectric loss of 0.8, which is much smaller than other composites that contain conductive fillers and exhibit a similar dielectric constant. When a very small amount (less than 1.0 wt.%) of MXene filler was used, the energy storage performances of these composites was slightly increased with the filler content due to its participation in polarization at a high electric field. The results indicate that 2-D MXenes are promising candidates for fabrication of high-performance dielectric composites with conductive fillers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support that the findings of this study are available from the corresponding author upon reasonable request.

References

  1. P. Barber, S. Balasubramanian, and Y. Anguchamy, Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage. Materials. 2, 4 (2009).

    Article  Google Scholar 

  2. V.K. Thakur, and R.K. Gupta, Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. Chem. Rev. 116, 4260 (2016).

    Article  Google Scholar 

  3. P. Ahmadpoor, A.S. Nateri, and V. Motaghitalab, The Optical Properties of PVA/TiO2 Composite Nanofibers. J. Appl. Polym. Sci. 130, 78 (2013).

    Article  CAS  Google Scholar 

  4. C.S. Jung, I.T. Lee, and P.W. Jang, Electro-Optical Properties of Nano-Thickness Polymer Film. J. Nanosci. Nanotechnol. 12, 3326 (2012).

    Article  CAS  Google Scholar 

  5. B. Kumar, and S.W. Kim, Energy Harvesting Based on Semiconducting Piezoelectric ZnO Nanostructures. Nano Energy 1, 342 (2012).

    Article  CAS  Google Scholar 

  6. M.S. Yoon, I. Mahmud, and S.C. Ur, Phase-Formation, Microstructure, and Piezoelectric/ Dielectric Properties of BiYO3-Doped Pb(Zr0.53Ti0.47)O3 for Piezoelectric Energy Harvesting Devices. Ceram. Int. 39, 8581 (2013).

    Article  CAS  Google Scholar 

  7. M. Castro, J. Lu, S. Bruzaud, B. Kumar, and J.F. Feller, Carbon Nanotubes/Poly(ε-Caprolactone) Composite Vapour Sensors. Carbon 47, 1930 (2009).

    Article  CAS  Google Scholar 

  8. B. Luo, X. Wang, Y. Wang, and L. Li, Fabrication, Characterization, Properties and Theoretical Analysis of Ceramic/PVDF Composite Flexible Films with High Dielectric Constant and Low Dielectric Loss. J. Mater. Chem. A. 2, 510 (2014).

    Article  CAS  Google Scholar 

  9. Z. Cheng, and Q. Zhang, Field-Activated Electroactive Polymers. MRS Bull. 33, 183 (2008).

    Article  CAS  Google Scholar 

  10. Z. Dang, J. Yuan, S. Yao, and R. Liao, Flexible Nanodielectric Materials with High dielectric constant for Power Energy Storage. Adv. Mater. 25, 6334 (2013).

    Article  CAS  Google Scholar 

  11. Z. Dang, J. Yuan, J. Zha, T. Zhou, S. Li, and G. Hu, Fundamentals, Processes and Applications of High-Dielectric Constant Polymer-Matrix Composites. Prog. Mater. Sci. 57, 660 (2012).

    Article  CAS  Google Scholar 

  12. L. Zhang, and Z. Cheng, Development of Polymer-Based 0–3 Composites with High Dielectric Constant. J. Adv. Dielectr. 01, 389 (2011).

    Article  Google Scholar 

  13. C.W. Nan, Y. Shen, and J. Ma, Physical Properties of Composites Near Percolation. Annu. Rev. Mater. Res. 40, 131 (2010).

    Article  CAS  Google Scholar 

  14. M.T. Sebastian, and H. Jantunen, Polymer-Ceramic Composites of 0–3 Connectivity for Circuits in Electronics: A Review. Int. J. Appl. Ceram. Technol. 7, 415 (2010).

    CAS  Google Scholar 

  15. L. Zhang, Z. Liu, X. Lu, G. Yang, X. Zhang, and Z. Cheng, Nano-Clip Based Composites with a Low Percolation Threshold and High Dielectric Constant. Nano Energy 26, 550 (2016).

    Article  CAS  Google Scholar 

  16. G. Wang, Y. Deng, Y. Xiang, and L. Guo, Fabrication of Radial ZnO Nanowire Clusters and Radial ZnO/PVDF Composites with Enhanced Dielectric Properties. Adv. Mater. 18, 2584 (2008).

    CAS  Google Scholar 

  17. Z. Dang, H. Wang, B. Peng, and C. Nan, Effect of BaTiO3 Size on Dielectric Property of BaTiO3/PVDF Composites. J. Electroceram. 21, 381 (2008).

    Article  CAS  Google Scholar 

  18. Y. Deng, Y. Zhang, Y. Xiang, G. Wang, and H. Xu, Bi2S3-BaTiO3/PVDF Three-Phase Composites with High Dielectric Dielectric Constant. J. Mater. Chem. 19, 2058 (2009).

    Article  CAS  Google Scholar 

  19. L. Zhang, P. Wu, Y. Lia, Z. Cheng, and J. Brewer, Preparation Process and Dielectric Properties of Ba0.5Sr0.5TiO3-P(VDF-CTFE) Nanocomposites. Compos. Part B. 56, 284 (2014).

    Article  CAS  Google Scholar 

  20. Y. Bai, Z. Cheng, V. Bharti, H. Xu, and Q. Zhang, High-Dielectric-Constant Ceramic-Powder Polymer Composites. Appl. Phys. Lett. 76, 3804 (2000).

    Article  CAS  Google Scholar 

  21. L. Zhang, X. Shan, P. Wu, J. Song, and Z. Cheng, Microstructure and Dielectric Properties of CCTO-P(VDF-TrFE) Nanocomposites. Ferroelectr. 405, 92 (2010).

    Article  CAS  Google Scholar 

  22. L. Zhang, X. Shan, and Z. Cheng, Dielectric Characteristics of CaCu3Ti4O12/P(VDF-TrFE) Nanocomposites. Appl. Phys. A. 107, 597 (2012).

    Article  CAS  Google Scholar 

  23. J. Sandler, J. Kirk, I. Kinloch, M. Shaffer, and A. Windle, Ultra-Low Electrical Percolation Threshold in Carbon-Nanotube-Epoxy Composites. Polymer 44, 5893 (2003).

    Article  CAS  Google Scholar 

  24. Z. Dang, C. Nan, D. Xie, Y. Zhang, and S. Tjong, Dielectric Behavior and Dependence of Percolation Threshold on the Conductivity of Fillers in Polymer-Semiconductor Composites. Appl. Phys. Lett. 85, 97 (2004).

    Article  CAS  Google Scholar 

  25. Z. Han, and A. Fina, Thermal Conductivity of Carbon Nanotubes and their Polymer Nanocomposites: A Review. Prog. Polym. Sci. 36, 914 (2011).

    Article  CAS  Google Scholar 

  26. D. Toker, D. Azulay, N. Shimoni, I. Balberg, and O. Millo, Tunneling and Percolation in Metal- Insulator Composite Materials. Phys. Rev. B. 68, 041403 (2003).

    Article  Google Scholar 

  27. V. Panwar, R. Mehra, J. Park, and S. Park, Dielectric Analysis of High-Density Polyethylene- Graphite Composites for Capacitor and EMI Shielding Application. J. Appl. Polym. Sci. 125, E610 (2012).

    Article  CAS  Google Scholar 

  28. Q. Li, Q. Xue, L. Hao, X. Gao, and Q. Zheng, Large Dielectric Constant of the Chemically Functionalized Carbon Nanotube/Polymer Composites. Compos. Sci. Technol. 68, 2290 (2008).

    Article  CAS  Google Scholar 

  29. J. Yuan, S. Yao, Z. Dang, A. Sylvestre, M. Genestoux, and J. Bai, Giant Dielectric Dielectric Constant Nanocomposites: Realizing True Potential of Pristine Carbon Nanotubes in Polyvinylidene Fluoride Matrix through an Enhanced Interfacial Interaction. J. Phys. Chem. C 115, 5515 (2011).

    Article  CAS  Google Scholar 

  30. F. He, S. Lau, H. Chan, and J. Fan, High Dielectric Dielectric Constant and Low Percolation Threshold in Nanocomposites Based on Poly(vinylidenefluoride) and Exfoliated Graphite Nanoplates. Adv. Mater. 21, 710 (2009).

    Article  CAS  Google Scholar 

  31. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. Barsoum, Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 23, 4248 (2011).

    Article  CAS  Google Scholar 

  32. J. Come, M. Naguib, P. Rozier, M. Barsoum, Y. Gogotsi, P. Taberna, M. Morcrette, and P. Simon, A Non-Aqueous Asymmetric Cell with a Ti2C-Based Two-Dimensional Negative Electrode. J. Electrochem. Soc. 159, A1368 (2012).

    Article  CAS  Google Scholar 

  33. J. Hu, B. Xu, C. Ouyang, S. Yang, and Y. Yao, Investigations on V2C and V2CX2 (X = F, OH) Monolayer as a Promising Anode Material for li Ion Batteries from Firstprinciples Calculations. J. Phys. Chem. C. 118, 24274 (2014).

    Article  CAS  Google Scholar 

  34. Y. Zeng, S. Rao, C. Xiong, G. Du, Z. Fan, and N. Chen, Enhanced Dielectric and Mechanical Properties of CaCu3Ti4O12/Ti3C2Tx MXene/Silicone Rubber Ternary Composites. Ceram. Int. 48, 6116 (2022).

    Article  CAS  Google Scholar 

  35. W. Zheng, X. Lu, W. Wang, Z. Wang, M. Song, Y. Wang, and C. Wang, Fabrication of Novel Ag Nanowires/Poly (Vinylidene Fluoride) Nanocomposite Film with High Dielectric Constant. Phys. Status Solidi A. 207, 1870 (2010).

    Article  CAS  Google Scholar 

  36. Y. Li, X. Man, J. Feng, and Z. Dang, Dielectric Behavior of a Metal-Polymer Composite with Low Percolation Threshold. Appl. Phys. Lett. 89, 072902 (2006).

    Article  Google Scholar 

  37. G. Sui, W. Jana, M. Zhong, and C.U. Fuqua, Dielectric Properties and Conductivity of Carbon Nanofiber/Semi-Crystalline Polymer Composites. Acta Mater. 56, 2381 (2008).

    Article  CAS  Google Scholar 

  38. Z. Dang, L. Wang, Y. Yin, Q. Zhang, and Q. Lei, Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/ Electroactive-Polymer Nanocomposites. Adv. Mater. 19, 852 (2007).

    Article  CAS  Google Scholar 

  39. C. Wu, X. Huang, L. Xie, X. Wu, J. Yu, and P. Jiang, Morphology-Controllable Graphene-TiO2 Nanorod Hybrid Nanostructures for Polymer Composites with High Dielectric Performance. J. Mater. Chem. 21, 17729 (2011).

    Article  CAS  Google Scholar 

  40. W. Li, L. Yu, Y. Zhu, D. Hua, and J. Wang, Annealing Effect on Poly(Vinylidene Fluoride/Trifluoroethylene)(70/30) Copolymer Thin Films Above the Melting Point. J. Appl. Polym. Sci. 116, 663 (2010).

    CAS  Google Scholar 

  41. Z. Dang, L. Wang, Y. Yin, Q. Zhang, and Q. Lei, Highly Aligned Graphene/Polymer Nanocomposites with Excellent Dielectric Properties for High-Performance Electromagnetic Interference Shielding. Adv. Mater. 19, 852 (2007).

    Article  CAS  Google Scholar 

  42. J Yuan, Z Dang, and J Bai, (2008) Unique Dielectric Properties in Polyaniline/Poly(Vinylidene Fluoride) Composites Induced by Temperature Variation. Phys. Status Solidi (RRL) Rapid Res. Lett. 2:233.

  43. Z. Cheng, Q. Zhang, and F. Bateman, Dielectric Relaxation Behavior and its Relation to Microstructure in Relaxor Ferroelectric Polymers: High-Energy Electron Irradiated Poly(vinylidene Fluoride–Trifluoroethylene) Copolymers. J. Appl. Phys. 92, 6749 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Project of State Key Laboratory of Aerospace Servo Actuation and Transmission (LASAT-20210505), National Key Research and Development Program of China (NO. 2018YFB1308700), and Shanxi Major Science and Technology Projects (NO. 20191102009).

Author information

Authors and Affiliations

Authors

Contributions

PZ performed the experiments and wrote the manuscript; JL helped perform the analysis with constructive discussions; RW contributed significantly to analysis and manuscript preparation. All the authors have approved the manuscript that is enclosed.

Corresponding author

Correspondence to Rongjun Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical aproval.

The authors declare that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part; Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Lai, J. & Wang, R. Flexible Nanocomposites Based on P(VDF-TrFE) Matrix and MXene 2-D Fillers with Low Percolation Threshold and High Dielectric Constant. J. Electron. Mater. 51, 6264–6274 (2022). https://doi.org/10.1007/s11664-022-09811-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09811-4

Keywords

Navigation