Skip to main content
Log in

Size-controlled microbeads through the influence of the coalescence effect in the emulsification solvent evaporation method

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This paper reports a novel, simple, repeatable and cost-effective protocol for producing Ca-alginate beads with controlled sizes ranging from 50–250 μm with a narrow size distribution. The characteristics of the beads depend on the emulsion droplets formed, and the size of the beads can be controlled by manipulating the coalescence factor and the applied mechanical energy, which will also reduce the cost and overall time of the procedure. These results suggest that beads with diameters of 58±5, 69±7, 80±8, 145±11, 195±12 and 225±15 μm (mean diameter ± standard deviation) were easily produced. This was achieved simply by adding a minor amount of Pluronic F-127 (i.e., 0.03%) and controlling the coalescence effect to reduce the stabilization of the emulsion. Therefore, the method has strong potential for mass production on an industrial scale. Furthermore, the solvent evaporation technique successfully evaporated the volatile organic solvent used for emulsification. The beads were proven to be safe via a cell culture study and might be suitable for use in the medical, pharmaceutical and bioengineering field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Callewaert, J. M. Millot, J. Lesage, D. L. Maquin, and F. E. Levy, Int. J. Pharm., 366, 103 (2009).

    Article  CAS  Google Scholar 

  2. A. D. Sezer and J. Akbuga, J. Microencapsulation, 16, 687 (1999).

    Article  CAS  Google Scholar 

  3. X. Wang, E. Wenk, X. Hu, G. R. Castro, L. Meinel, X. Wang, C. Li, H. Merkle, and D. L. Kaplan, Biomaterials, 28, 4161 (2007).

    Article  CAS  Google Scholar 

  4. P. K. Suk, J. C. Moon, K. S. Hee, R. M. John, K. G. Son, H. C. Whan, Y. Y. Sun, K. M. Suk, and L. H. Bang, Macromol. Res., 13, 285 (2005).

    Google Scholar 

  5. D. Quong and R. J. Neufeld, Biotechnol. Bioeng., 60, 134 (2000).

    Google Scholar 

  6. K. G. H. Desai, C. Liu, and H. J. Park, J. Microencapsulation, 22, 363 (2005).

    Article  CAS  Google Scholar 

  7. G. T. Grant, E. R. Morris, D. A. Rees, and P. J. C. Smith, FEBS Letters, 32, 195 (1973).

    Article  CAS  Google Scholar 

  8. L. S. Min, Y. E. Soo, G. H. Do, and L. S. Jeong, Macromol. Res., 17, 168 (2009).

    Google Scholar 

  9. C. Berkland, K. Kim, and D. W. Pack, Pharm. Res., 20, 1055 (2003).

    Article  CAS  Google Scholar 

  10. C. Berkland, E. Pollauf, D. W. Pack, and K. Kim, J. Control. Release, 96, 101 (2004).

    Article  CAS  Google Scholar 

  11. D. Chicheportiche and G. Reach, Diabetologia, 31, 54 (1988).

    CAS  Google Scholar 

  12. I. Jalenjak and T. Kondo, J. Pharm. Sci., 70, 456 (2006).

    Article  Google Scholar 

  13. G. Fundueanu, C. Nastruzzi, A. Carpov, J. Desbrieres, and M. Rinaudo, Biomaterials, 20, 1427 (1999).

    Article  CAS  Google Scholar 

  14. T. O. S. Sugiura, Y. Izumida, Y. Aoyagi, M. Satake, A. Ochiai, N. Ohkohchi, and M. Nakajima, Biomaterials, 16, 3327 (2005).

    Article  Google Scholar 

  15. A. M. Chuah, T. Kuroiwa, I. Kobayashi, X. Zhang, and M. Nakajima, Colloids Surf. A, 351, 9 (2009).

    Article  CAS  Google Scholar 

  16. J. Tu, S. Bolla, J. Barr, J. Miedema, X. Li, and B. Jasti, Int. J. Pharm., 30, 171 (2005).

    Article  Google Scholar 

  17. L. Capretto, S. Mazzitelli, A. Tosi, and C. Nastruzzi, J. Control. Release, 132, 55 (2008).

    Article  Google Scholar 

  18. D. Poncelet, Ann. Acad. Sci., 944, 74 (2001).

    Article  CAS  Google Scholar 

  19. G. Fundueanu, E. Esposito, D. Mihai, A. Carpov, J. Desbrieres, M. Rinaudo, and C. Nastruzzi, Int. J. Pharm., 170, 11 (1998).

    Article  CAS  Google Scholar 

  20. J. O. You, S. B. Park, H. Y. Park, S. Haam, C. H. Chung, and W. S. Kim, J. Microencapsulation, 18, 521 (2001).

    Article  CAS  Google Scholar 

  21. C. P. Reis, R. J. Neufeld, S. Vilela, A. J. Ribeiro, and F. Veiga, J. Microencapsulation, 23, 245 (2006).

    Article  CAS  Google Scholar 

  22. Q. Weia, W. Weia, R. Tiana, L. Wang, Z. Su, and G. Ma, J. Colloid Interface Sci., 323, 267 (2008).

    Article  Google Scholar 

  23. R. Bodmeier and R. W. Mc Ginity, Pharm. Res., 4, 465 (1987).

    Article  CAS  Google Scholar 

  24. P. B. Thu, P. Bruheim, T. Espevik, O. Smidsrd, P. S. Shiong, and G. S. Brek, Biomaterials, 17, 1069 (1997).

    Article  Google Scholar 

  25. S. Nilkumhang and A. W. Basit, Int. J. Pharm., 377, 135 (2009).

    Article  CAS  Google Scholar 

  26. Y. Fu, Z. Jin, G. Liu, and Y. Yin, Synth. Met., 159, 1744 (2009).

    Article  CAS  Google Scholar 

  27. M. Iwata and J. W. Mc Ginity, J. Microencapsulation, 9, 201 (1992).

    Article  CAS  Google Scholar 

  28. N. Mofidi, M. A. Moghadam, and M. N. Sarbolouki, Process Biochem., 35, 885 (2000).

    Article  CAS  Google Scholar 

  29. Y. Tonga, C. Lib, F. Liangc, J. Chend, H. Zhanga, G. Liua, H. Suna, and J. H. T. Luonge, Nucl. Instrum. Methods Phys. Res. Sect. B, 266, 5041 (2008).

    Article  Google Scholar 

  30. Office of environmental Health Hazard Assessment (www.oehha.ca.gov/water/phg/pdf/dcm.pdf).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Ok Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdi, S.I.H., Ng, S.M., Choi, J.Y. et al. Size-controlled microbeads through the influence of the coalescence effect in the emulsification solvent evaporation method. Macromol. Res. 18, 668–673 (2010). https://doi.org/10.1007/s13233-010-0706-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-010-0706-7

Keywords

Navigation