Skip to main content

Advertisement

Log in

Optimization of microencapsulation of metronidazole in alginate microbeads for purpose of controlled release

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

To obtain the optimum conditions for encapsulation of metronidazole in sodium alginate, a response surface methodology (RSM) was used to find out the effect of independent variables (alginate concentration and drug to alginate ratio) on dependent variables including mean particle size, yield, drug loading, and encapsulation efficiency. Furthermore, the effect of alginate concentration on swelling behavior of microbeads was evaluated, and the mechanism of drug release was also studied. On the basis of the results, it can be declared that spherical microbeads with mean particle sizes of 443–665 µm were obtained with process yields, drug loading, and encapsulation efficiencies of almost 79.5%, 54.9%, and 79.9%, respectively. The metronidazole release was found to be 68% in 7 h with a formulation containing the drug to polymer ratio of 2:1. The optimum values for alginate concentration and drug to alginate ratio were determined to be within 1.4% (w/v) and 2.85 (w/w), respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CF-KRH:

Calcium-free Krebs ringer herpes

CR:

Controlled release

DL:

Drug loading

EE:

Encapsulation efficiency

FE-SEM:

Field emission scanning electron microscopy

GI:

Gastrointestinal

IR:

Immediate release

MZ:

Metronidazole

PBS:

Phosphate-buffered saline

RMSE:

Root-mean-square error

RSM:

Response surface methodology

SEM:

Scanning electron microscopy

SGF:

Simulated gastric fluid

SIF:

Simulated intestinal fluid

Uv:

Ultraviolet

References

  1. Deshpande AA, Rhodes CT, Shah NH, Malick AW (1996) Controlled-Release Drug Delivery Systems for Prolonged Gastric Residence: An Overview. Drug Dev Ind Pharm 22(6):531–539

    Article  CAS  Google Scholar 

  2. Vasir JK, Tambwekar K, Garg S (2003) Bioadhesive microspheres as a controlled drug delivery system. Int J Pharm 255(1–2):13–32

    Article  CAS  PubMed  Google Scholar 

  3. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric Systems for Controlled Drug Release. Chem Rev 99(11):3181–3198

    Article  CAS  PubMed  Google Scholar 

  4. Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367

    Article  CAS  PubMed  Google Scholar 

  5. Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK (2008) Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm 68(3):513–525

    CAS  PubMed  Google Scholar 

  6. Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K (2000) Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol 62(1–2):47–55

    Article  CAS  PubMed  Google Scholar 

  7. Zielinski A, B. and P. Aebischer, (1994) Chitosan as a matrix for mammalian cell encapsulation. Biomaterials 15(13):1049–1056

    Article  CAS  PubMed  Google Scholar 

  8. Ninan N, Muthiah M, Park I-K, Elain A, Thomas S, Grohens Y (2013) Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohyd Polym 98(1):877–885

    Article  CAS  Google Scholar 

  9. Oliveira MB, Mano JF (2011) Polymer-based microparticles in tissue engineering and regenerative medicine. Biotechnol Prog 27(4):897–912

    Article  CAS  PubMed  Google Scholar 

  10. Grøndahl L, Lawrie G, Jejurikar A (2010) Alginate-based drug delivery devices. Biointegration of Medical Implant Materials. Elsevier, pp 236–266

    Chapter  Google Scholar 

  11. Tønnesen HH, Karlsen J (2002) Alginate in Drug Delivery Systems. Drug Dev Ind Pharm 28(6):621–630

    Article  PubMed  Google Scholar 

  12. Bolai Paul SA, Qureshi MJ (2018) Development and evaluation of metronidazole loaded carbopol 934P mucoadhesive microcapsules for sustained drug release at the gastric mucosa. J Appl Pharmaceutical Sci 8(12):020–031

    Article  Google Scholar 

  13. Taylor MJ, Tanna S, Sahota T (2010) In Vivo Study of a Polymeric Glucose-Sensitive Insulin Delivery System Using a Rat Model. J Pharm Sci 99(10):4215–4227

    Article  CAS  PubMed  Google Scholar 

  14. de Souza Ferreira SB, de Assis Dias BR, Obregón CS, Gomes CC, de Araújo Pereira RR, Ribeiro Godoy JS, Estivalet Svidzinski TI, Bruschi ML (2014) Microparticles containing propolis and metronidazole: in vitro characterization, release study and antimicrobial activity against periodontal pathogens. Pharm Dev Technol 19(2):173–180

    Article  PubMed  Google Scholar 

  15. Rath G, Johal ES, Goyal AK (2011) Development of Serratiopeptidase and Metronidazole Based Alginate Microspheres for Wound Healing. Artificial Cells, Blood Substitutes Biotechnol 39(1):44–50

    Article  CAS  Google Scholar 

  16. Gao P, Nie X, Zou M, Shi Y, Cheng G (2011) Recent advances in materials for extended-release antibiotic delivery system. J Antibiot 64:625

    Article  CAS  Google Scholar 

  17. Takka S, Ocak ÖH, Acartürk F (1998) Formulation and investigation of nicardipine HCl–alginate gel beads with factorial design-based studies. Eur J Pharm Sci 6(3):241–246

    Article  CAS  PubMed  Google Scholar 

  18. Nayak AK, Pal D (2011) Development of pH-sensitive tamarind seed polysaccharide–alginate composite beads for controlled diclofenac sodium delivery using response surface methodology. Int J Biol Macromol 49(4):784–793

    Article  CAS  PubMed  Google Scholar 

  19. Li G-Y, Zhong M, Zhou Z-D, Zhong Y-D, Ding P, Huang Y (2011) Formulation optimization of chelerythrine loaded O-carboxymethylchitosan microspheres using response surface methodology. Int J Biol Macromol 49(5):970–978

    Article  CAS  PubMed  Google Scholar 

  20. Lin C-C, Metters AT (2006) Hydrogels in controlled release formulations: Network design and mathematical modeling. Adv Drug Deliv Rev 58(12–13):1379–1408

    Article  CAS  PubMed  Google Scholar 

  21. Dash S, PN Murthy, L Nath, and PJAPP Chowdhury (2010). Kinetic modeling on drug release from controlled drug delivery systems. 67(3), 217–223

  22. Serra L, Doménech J, Peppas NA (2006) Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 27(31):5440–5451

    Article  CAS  PubMed  Google Scholar 

  23. Higuchi T (1963) Mechanism of sustained-action medication Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharmaceutical Sci 52(12):1145–1149

    Article  CAS  Google Scholar 

  24. Ritger PL, Peppas NA (1987) A simple equation for description of solute release I Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Controlled Release 5(1):23–36

    Article  CAS  Google Scholar 

  25. Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Control Release 161(2):351–362

    Article  CAS  PubMed  Google Scholar 

  26. Caballero F, Foradada M, Miñarro M, Pérez-Lozano P, García-Montoya E, Ticó JR, Suñé-Negre JM (2014) Characterization of alginate beads loaded with ibuprofen lysine salt and optimization of the preparation method. Int J Pharm 460(1–2):181–188

    Article  CAS  PubMed  Google Scholar 

  27. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15(1):25–35

    Article  CAS  Google Scholar 

  28. Badwan AA, Abumalooh A, Sallam E, Abukalaf A, Jawan O (1985) A Sustained Release Drug Delivery System Using Calcium Alginate Beads. Drug Dev Ind Pharm 11(2–3):239–256

    Article  CAS  Google Scholar 

  29. Odeku OA, Okunlola A, Lamprecht A (2013) Microbead design for sustained drug release using four natural gums. Int J Biol Macromol 58:113–120

    Article  CAS  PubMed  Google Scholar 

  30. Manjanna KM, Rajesh KS, Shivakumar B (2013) Formulation and Optimization of Natural Polysaccharide Hydrogel Microbeads of Aceclofenac Sodium for Oral Controlled Drug Delivery. Am J Medical Sci Medicine 1(1):5–17

    Article  CAS  Google Scholar 

  31. Angadi SC, Manjeshwar LS, Aminabhavi TM (2012) Novel composite blend microbeads of sodium alginate coated with chitosan for controlled release of amoxicillin. Int J Biol Macromol 51(1–2):45–55

    Article  CAS  PubMed  Google Scholar 

  32. Patel YL, Sher P, Pawar AP (2006) The effect of drug concentration and curing time on processing and properties of calcium alginate beads containing metronidazole by response surface methodology. AAPS PharmSciTech 7(4):E24–E30

    Article  PubMed Central  Google Scholar 

  33. Murata Y, Sasaki N, Miyamoto E, Kawashima S (2000) Use of floating alginate gel beads for stomach-specific drug delivery. Eur J Pharm Biopharm 50(2):221–226

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Rahbar Shahrouzi.

Ethics declarations

Conflicts of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, E., Rahbar Shahrouzi, J., Jafarizadeh-Malmiri, H. et al. Optimization of microencapsulation of metronidazole in alginate microbeads for purpose of controlled release. Polym. Bull. 79, 8883–8903 (2022). https://doi.org/10.1007/s00289-021-03933-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03933-1

Keyword

Navigation