Skip to main content
Log in

A direct method of moving planes for the fractional p-Laplacian system with negative powers

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we establish the direct method of moving planes for the fractional p-Laplacian system with negative powers. The key theorems are decay at infinity and a boundary estimate in the direct method of moving planes. Moreover, we apply the direct method of moving planes to obtain the radial symmetry and monotonicity of the positive solutions for the fractional p-Laplacian system with negative powers in the whole space. We also give one special case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bhakta, D. Ganguly and L. Montoro, Fractional Hardy equations with critical and supercritical exponents, arXiv:2110.14414.

  2. M. Bhakta and D. Mukherjee, Nonlocal scalar field equations: qualitative properties, asymptotic profiles and local uniqueness of solutions, J. Differential Equations 266 (2019), no. 11, 6985-7037.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Biswas and S. Jarohs, On overdetermined problems for a general class of nonlocal operators, J. Differential Equations 268 (2020), no. 5, 2368-2393.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian , Comm. Partial Differential Equations, 32 (2007) 1245-1260.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math. 62 (2009) 597-638.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Cai and L. Ma, Moving planes for nonlinear fractional Laplacian equation with negative powers, Discrete Contin. Dyn. Syst. Ser. A 38 (2018) 4603-4615.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Cao, X. Wang and Z. Dai, Radial symmetry and Monotonicity of solutions to a system involving fractional p-Laplacian in a ball, Advances in Mathematical Physics Volume 2018, Article ID 1565731, 6 pages.

  8. A. Canino, L. Montoro and B. Sciunzi, The moving plane method for singular semilinear elliptic problems, Nonlinear Anal. 156 (2017) 61-69.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math. 274 (2015) 167-198.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, in: AIMS Book Series, vol. 4, 2010.

  11. W. Chen and C. Li, Maximum principle for the fractional p-Laplacian and symmetry of solutions, Adv. Math. 335 (2018) 735-758.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Chen, C. Li and Y. Li, A direct method of moving planes for fractional Laplacian, Adv. Math. 308 (2017) 404-437.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations 56 (2017) 29.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Chen, Y. Li and P. Ma, The fractional Laplacian, World Scientific Publishing, July 2020.

  15. Y. Chen and B. Liu, Symmetry and non-existence of positive solutions for fractional p-Laplacian systems, Nonlinear Anal. 183 (2019) 303-322.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations 260 (2016) 4758-4785.

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), 330–343.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Dipierro, L. Montoro, I. Peral, and B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var. Partial Differential Equations 55 (2016) Art. 99, 29 pp.

  19. Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, Adv. Math. 229 (2012) 2835-2867.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 6, 1237-1262.

    Article  MathSciNet  MATH  Google Scholar 

  21. R.L. Frank and E. Lenzmann,Uniqueness and nondegeneracy of ground states for \((-\Delta )^{s}Q+Q-Q^{\alpha +1}=0\), Acta Math. 210 (2013) 261-318.

  22. R.L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math. 69 (2016) 1671-1726.

    Article  MathSciNet  MATH  Google Scholar 

  23. R.L. Frank and E. Lieb, Inversion positivity and the sharp HardyCLittlewoodCSobolev inequality, Calc. Var. Partial Differential Equations 39 (2010) 85-99.

    Article  MathSciNet  MATH  Google Scholar 

  24. Z.M. Guo and J.C. Wei, Symmetry of non-negative solutions of a semilinear elliptic equation with singular nonlinearity, Proc.Roy.Soc.Edinburgh Sect.A,137(2007),963-994.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Jarohs and T. Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Ann. Mat. Pura Appl. 195 (2016) 273-291.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Jin and C. Li, Symmetry of solutions to some integral equations, Proc. Amer. Math. Soc. 134 (2006) 1661-1670.

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Jin, Y.Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc. (JEMS) 16 (2014) 1111-1171.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Jin and J. Xiong, A fractional yemabe flow and some applications, J. Reine Angew. Math. 696 (2014) 187-223.

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Lei, Wolff type potential estimates and application to nonlinear equations with negative exponents, Discrete Contin. Dyn. Syst. 35 (2015), no. 5, 2067C2078.

    Article  MathSciNet  Google Scholar 

  30. Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations, Calc. Var. Partial Differential Equations 45 (2012) 43-61.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Li and L. Ma, Uniqueness of positive bound states to Schrodinger systems with critical exponents, SIAM J. Math. Anal. 40 (2008) 1049-1057.

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Liu and L. Ma, Radial symmetry results for fractional Laplacian system, Nonlinear Anal. 146 (2016) 120-135.

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Lu and J. Zhu, Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality, Calc. Var. Partial Differential Equations 42 (2011) 563-577.

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Ma and D. Chen, A Liouville type theorem for an integral system, Commun. Pure Appl. Anal. 5 (2006) 855-859.

    Article  MathSciNet  MATH  Google Scholar 

  35. L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal. 195 (2010) 455-467.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Mallick, Extremals for fractional order Hardy-Sobolev-Maz’ya inequality, Calc. Var. Partial Differential Equations 58 (2019) Art.45, 37PP.

  37. C. Reandle, E. Colorado, A. de Pablo and U. Sanchez, A concaveconvex elliptic problem involving the fractional Laplacian, Proc Royal Soc. of Edinburgh 143(2013) 39-71.

    Article  MathSciNet  Google Scholar 

  38. B. Sciunzi, On the moving plane method for singular solutions to semilinear elliptic equations, J. Math. Pures Appl. (9) 108 (2017) 111-123.

    Article  MathSciNet  MATH  Google Scholar 

  39. L. Silvestre, Regilarity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (1) (2007) 67-112.

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Wu and P. Niu, Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations, Discrete Contin. Dyn. Syst. 39 (2019) 1573-1583.

    Article  MathSciNet  MATH  Google Scholar 

  41. L. Zhang, B. Ahmad, G. Wang and X. Ren, Radial symmetry of solutions for fractional p-Laplacian system, Nonlinear Anal. 196 (2020) 11801.

    Article  MathSciNet  Google Scholar 

  42. B. Zhang and Z. Lü, Symmetry and nonexistene of solutions for a fully nonlinear nonlocal system, Pac. J. Math. 299 (2019) 237-254.

    Article  Google Scholar 

  43. R. Zhuo, W. Chen, X. Cui and Z. Yuan, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst. 36 (2016) 1125-1141.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was partially supported by NSFC(No.11271166). The authors would like to thank the reviewers for their helps and patience in improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxue Lü.

Additional information

Communicated by K Sandeep.

The work was partially supported by NSFC (No.11271166), sponsored by Qing Lan Project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qie, M., Lü, Z. & Zhang, X. A direct method of moving planes for the fractional p-Laplacian system with negative powers. Indian J Pure Appl Math 54, 344–358 (2023). https://doi.org/10.1007/s13226-022-00257-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-022-00257-2

Keywords

Navigation