Skip to main content
Log in

Symmetry and monotonicity of positive solutions to Schrödinger systems with fractional p-Laplacians

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

In this paper, we first establish narrow region principle and decay at infinity theorems to extend the direct method of moving planes for general fractional p-Laplacian systems. By virtue of this method, we investigate the qualitative properties of positive solutions for the following Schrödinger system with fractional p-Laplacian

$$\left\{ {\matrix{{( - \Delta )_p^su + a{u^{p - 1}} = f(u,v),} \cr {( - \Delta )_p^tv + b{v^{p - 1}} = g(u,v),} \cr } } \right.$$

where 0 < s, t < 1 and 2 < p < ∞. We obtain the radial symmetry in the unit ball or the whole space ℝN (N ≥ 2), the monotonicity in the parabolic domain and the nonexistence on the half space for positive solutions to the above system under some suitable conditions on f and g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C Bjorland, L Caffarelli, A Figalli. Non-local gradient dependent operators, Adv Math, 2012, 230(4–6): 1859–1894.

    Article  MathSciNet  Google Scholar 

  2. C Bjorland, L Caffarelli, A Figalli. Nonlocal tug-of-war and the infinity fractional Laplacian, Comm Pure Appl Math, 2012, 65(3): 337–380.

    Article  MathSciNet  Google Scholar 

  3. C Brändle, E Colorado, A de Pablo, U Sánchez. A concave-convex elliptic problem involving the fractional Laplacian, Proc Roy Soc Edinburgh Sect, 2013, 143(1): 39–71.

    Article  MathSciNet  Google Scholar 

  4. L Caffarelli, L Silvestre. An extension problem related to the fractional Laplacian, Comm Partial Differential Equations, 2007, 32(7–9): 1245–1260.

    Article  MathSciNet  Google Scholar 

  5. W Chen, Y Fang, R Yang. Liouville theorems involving the fractional Laplacian on a half space, Adv Math, 2015, 274(2): 167–198.

    Article  MathSciNet  Google Scholar 

  6. W Chen, C Li. Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv Math, 2018, 335: 735–758.

    Article  MathSciNet  Google Scholar 

  7. W Chen, C Li, Y Li. A direct method of moving planes for the fractional Laplacian, Adv Math, 2017, 308: 404–437.

    Article  MathSciNet  Google Scholar 

  8. W Chen, C Li, G Li. Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc Var Partial Differential Equations, 2017, 56(2): 29.

    Article  MathSciNet  Google Scholar 

  9. W Chen, C Li, B Ou. Classification of solutions for an integral equation, Comm Pure Appl Math, 2006, 59(3): 330–343.

    Article  MathSciNet  Google Scholar 

  10. W Chen, C Li, B Ou. Qualitative properties of solutions for an integral equation, Discrete Contin Dyn Syst, 2005, 12(2): 347–354.

    Article  MathSciNet  Google Scholar 

  11. W Chen, J Zhu. Indefinite fractional elliptic problem and Liouville theorems, J Differential Equations, 2016, 260(5): 4758–4785.

    Article  MathSciNet  Google Scholar 

  12. Y Chen, B Liu. Symmetry and non-existence of positive solutions for fractional p-Laplacian systems, Nonlinear Anal, 2019, 183: 303–322.

    Article  MathSciNet  Google Scholar 

  13. E P Gross. Physics of Many-particle Systems, Gordon Breach, New York, 1966.

    Google Scholar 

  14. N Laskin. Fractional quantum mechanics and Lévy path integrals, Phys Lett A, 2000, 268(4–6): 298–305.

    Article  MathSciNet  Google Scholar 

  15. N Laskin. Fractional Schrödinger equation, Phys Rev E 66, 2002, 056108, DOI: https://doi.org/10.1103/PhysRevE.66.056108.

    Article  MathSciNet  Google Scholar 

  16. J Li. Monotonicity and radial symmetry results for Schrödinger systems with fractional diffusion, Pacific J Math, 2018, 294(1): 107–121.

    Article  MathSciNet  Google Scholar 

  17. E H Lieb, S Barry. The Hartree-Fock theory for Coulomb systems, Comm Math Phys, 1977, 53(3): 185–194.

    Article  MathSciNet  Google Scholar 

  18. B Liu, L Ma. Radial symmetry results for fractional Laplacian systems, Nonlinear Anal, 2016, 146: 120–135.

    Article  MathSciNet  Google Scholar 

  19. L Ma, L Zhao. Classification of positive solitary solutions of the nonlinear Choquard equation, Arch Ration Mech Anal, 2010, 195(2): 455–467.

    Article  MathSciNet  Google Scholar 

  20. L Ma, Z Zhang. Symmetry of positive solutions for Choquard equations with fractional p-Laplacian, Nonlinear Anal, 2019, 182: 248–262.

    Article  MathSciNet  Google Scholar 

  21. M Qu, L Yang. Solutions to the nonlinear Schrödinger systems involving the fractional Laplacian, J Inequal Appl, 2018, 297, https://doi.org/10.1186/s13660-018-1874-9.

  22. L Wu, P Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplace equations, Discrete Contin Dyn Syst, 2019, 39(3): 1573–1583.

    Article  MathSciNet  Google Scholar 

Download references

Funding

Supported by the National Natural Science Foundation of China(12101452, 12071229, 11771218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-qiu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Lw., Zhang, Zq. Symmetry and monotonicity of positive solutions to Schrödinger systems with fractional p-Laplacians. Appl. Math. J. Chin. Univ. 37, 52–72 (2022). https://doi.org/10.1007/s11766-022-4263-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-022-4263-6

MR Subject Classification

Keywords

Navigation