Skip to main content
Log in

From examples to methods: two cases from the study of units in integral group rings

  • Survey Article
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this article, we review the proofs of the first Zassenhaus Conjecture on conjugacy of torsion units in integral group rings for the alternating groups of degree 5 and 6, by Luthar-Passi and Hertweck. We describe how the study of these examples led to the development of two methods – the HeLP method and the lattice method. We exhibit these methods and summarize some results which were achieved using them. We then apply these methods to the study of the first Zassenhaus conjecture for the alternating group of degree 7 where only one critical case remains open for a full answer. Along the way we show in examples how recently obtained results can be combined with the methods presented and collect open problems some of which could be attacked using these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This package is free and open software, comes with recent GAP installations and is also available from https://gap-packages.github.io/HeLP/. Note that some of the external software might need compilation, see the manual.

References

  1. P. J. Allen and C. Hobby, A characterization of units in \({\bf Z}[A_{4}]\), J. Algebra 66 (1980), no. 2, 534–543.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Bächle and M. Caicedo, On the prime graph question for almost simple groups with an alternating socle, Internat. J. Algebra Comput. 27 (2017), no. 3, 333–347.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. D. Berman and P. M. Gudivok, Indecomposable representations of finite groups over the ring of \(p\)-adic integers, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 875–910.

    MathSciNet  MATH  Google Scholar 

  4. V. Bovdi, C. Höfert, and W. Kimmerle, On the first Zassenhaus conjecture for integral group rings, Publ. Math. Debrecen 65 (2004), no. 3-4, 291–303.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Bächle, A. Herman, A. Konovalov, L. Margolis, and G. Singh, The status of the Zassenhaus conjecture for small groups, Exp. Math. 27 (2018), no. 4, 431–436.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Bruns, B. Ichim, and C. Söger, The power of pyramid decomposition in Normaliz, J. Symbolic Comput. 74 (2016), 513–536.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. A. Bovdi, E. Jespers, and A. B. Konovalov, Torsion units in integral group rings of Janko simple groups, Math. Comp. 80 (2011), no. 273, 593–615.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Bächle and W. Kimmerle, On torsion subgroups in integral group rings of finite groups, J. Algebra 326 (2011), 34–46.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. A. Bovdi, A. B. Konovalov, and S. Linton, Torsion units in integral group ring of the Mathieu simple group \({\rm M}_{22}\), LMS J. Comput. Math. 11 (2008), 28–39.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Bächle, W. Kimmerle, and M. Serrano, On the First Zassenhaus Conjecture and Direct Products, Canad. J. Math. 72 (2020), no. 3, 602–624.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Bächle and L. Margolis, Torsion subgroups in the units of the integral group ring of PSL(2,\(p^3\)), Arch. Math. (Basel) 105 (2015), no. 1, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Bächle and L. Margolis, On the prime graph question for integral group rings of 4-primary groups I, Internat. J. Algebra Comput. 27 (2017), no. 6, 731–767.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Bächle and L. Margolis, Rational conjugacy of torsion units in integral group rings of non-solvable groups, Proc. Edinb. Math. Soc. (2) 60 (2017), no. 4, 813–830.

  14. A. Bächle and L. Margolis, HeLP: a GAP package for torsion units in integral group rings, J. Softw. Algebra Geom. 8 (2018), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Bächle and L. Margolis, An application of blocks to torsion units in group rings, Proc. Amer. Math. Soc. 147 (2019), no. 10, 4221–4231.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Bächle and L. Margolis, On the prime graph question for integral group rings of 4-primary groups II, Algebr. Represent. Theory 22 (2019), no. 2, 437–457.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. A. Bovdi, The unit group of an integral group ring (Russian), Uzhgorod Univ., Uzhgorod, 1987.

    Google Scholar 

  18. J. A. Cohn and D. Livingstone, On the structure of group algebras. I, Canad. J. Math. 17 (1965), 583–593.

  19. M. Caicedo and L. Margolis, Orders of units in integral group rings and blocks of defect 1, J. Lond. Math. Soc. (2) 103 (2021), no. 4, 1515–1546.

  20. M. Caicedo, L. Margolis, and Á. del Río, Zassenhaus conjecture for cyclic-by-abelian groups, J. Lond. Math. Soc. (2) 88 (2013), no. 1, 65–78.

  21. Ch. W. Curtis and I. Reiner, Methods of representation theory. Vol. I, John Wiley & Sons Inc., New York, 1981, With applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication.

  22. F. Digne and J. Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991.

    Book  Google Scholar 

  23. Dniester notebook: unsolved problems in the theory of rings and modules, First All-Union Symposium on the Theory of Rings and Modules (Kishinev, 1968) (Russian), Redakc.-Izdat. Otdel Akad. Nauk Moldav. SSR, Kishinev, 1969.

  24. Á. del Río and M. Serrano, Zassenhaus conjecture on torsion units holds for \({\rm SL}(2,p)\) and \({\rm SL}(2,p^2)\), J. Group Theory 22 (2019), no. 5, 953–974.

    Article  MathSciNet  MATH  Google Scholar 

  25. Florian Eisele and Leo Margolis, A counterexample to the first Zassenhaus conjecture, Adv. Math. 339 (2018), 599–641.

    Article  MathSciNet  MATH  Google Scholar 

  26. The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.10.2, 2019, http://www.gap-system.org.

  27. J. Gildea, Zassenhaus conjecture for integral group ring of simple linear groups, J. Algebra Appl. 12 (2013), no. 6, 1350016, 10.

  28. M. Hertweck, A counterexample to the isomorphism problem for integral group rings, Ann. of Math. (2) 154 (2001), no. 1, 115–138.

  29. M. Hertweck, On the torsion units of some integral group rings, Algebra Colloq. 13 (2006), no. 2, 329–348.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Hertweck, Partial augmentations and Brauer character values of torsion units in group rings, 16 pages,. arXiv:0612.429v2 [math.RA].

  31. M. Hertweck, Torsion units in integral group rings of certain metabelian groups, Proc. Edinb. Math. Soc. (2) 51 (2008), no. 2, 363–385.

  32. M. Hertweck, Unit groups of integral finite group rings with no noncyclic abelian finite \(p\)-subgroups, Comm. Algebra 36 (2008), no. 9, 3224–3229.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Hertweck, Zassenhaus conjecture for \(A_6\), Proc. Indian Acad. Sci. Math. Sci. 118 (2008), no. 2, 189–195.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Hertweck, On torsion units in integral group rings of Frobenius groups, 8 pages, arXiv:1207.5256 [math.RA].

  35. M. Hertweck, C. Höfert, and W. Kimmerle, Finite groups of units and their composition factors in the integral group rings of the group \({\rm PSL}(2,q)\), J. Group Theory 12 (2009), no. 6, 873–882.

    Article  MathSciNet  MATH  Google Scholar 

  36. G. Higman, Units in group rings, 1940, Thesis (Ph.D.)–Univ. Oxford.

  37. G. Hiss and K. Lux, Brauer trees of sporadic groups, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1989.

    MATH  Google Scholar 

  38. C. Höfert, Bestimmung von Kompositionsfaktoren endlicher Gruppen aus Burnsideringen und ganzzahligen Gruppenringen, Doktorarbeit, Universität Stuttgart, 2008, http://elib.uni-stuttgart.de/opus/volltexte/2008/3541/.

    MATH  Google Scholar 

  39. I. Hughes and K. R. Pearson, The group of units of the integral group ring \(ZS_{3}\), Canad. Math. Bull. 15 (1972), 529–534.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Herman and G. Singh, Revisiting the Zassenhaus conjecture on torsion units for the integral group rings of small groups, Proc. Indian Acad. Sci. Math. Sci. 125 (2015), no. 2, 167–172.

    Article  MathSciNet  MATH  Google Scholar 

  41. G. James, The representation theory of the symmetric groups, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 111–126.

  42. Mini-Workshop: Arithmetik von Gruppenringen, Mini-Workshop: Arithmetik von Gruppenringen, Oberwolfach Rep. 4 (2007), no. 4, 3209–3239, Abstracts from the mini-workshop held November 25–December 1, 2007, Organized by Eric Jespers, Wolfgang Kimmerle, Zbigniew Marciniak and Gabriele Nebe.

  43. Stanley O. Juriaans and César Polcino Milies, Units of integral group rings of Frobenius groups, J. Group Theory 3 (2000), no. 3, 277–284.

  44. E. Jespers and Á. del Río, Group ring groups. Volume 1: Orders and generic constructions of units, Berlin: De Gruyter, 2016.

  45. E. Jespers and Á. del Río, Group ring groups. Volume 2: Structure theorems of unit groups, Berlin: De Gruyter, 2016.

  46. W. Kimmerle, On the prime graph of the unit group of integral group rings of finite groups, Groups, rings and algebras, Contemp. Math., vol. 420, Amer. Math. Soc., Providence, RI, 2006, pp. 215–228.

  47. W. Kimmerle and A. Konovalov, On the Gruenberg-Kegel graph of integral group rings of finite groups, Internat. J. Algebra Comput. 27 (2017), no. 6, 619–631.

    Article  MathSciNet  MATH  Google Scholar 

  48. W. Kimmerle and L. Margolis, \(p\)- subgroups of units in \({\mathbb{Z}}G\), Groups, rings, group rings, and Hopf algebras, Contemp. Math., vol. 688, Amer. Math. Soc., Providence, RI, 2017, pp. 169–179.

  49. I. S. Luthar and A. K. Bhandari, Torsion units of integral group rings of metacyclic groups, J. Number Theory 17 (1983), no. 2, 270–283.

    Article  MathSciNet  MATH  Google Scholar 

  50. I. S. Luthar and I. B. S. Passi, Zassenhaus conjecture for \(A_5\), Proc. Indian Acad. Sci. Math. Sci. 99 (1989), no. 1, 1–5.

    Article  MathSciNet  MATH  Google Scholar 

  51. K. Lux and H. Pahlings, Representations of groups. a computational approach, Cambridge Studies in Advanced Mathematics, vol. 124, Cambridge University Press, Cambridge, 2010.

  52. I. S. Luthar and P. Trama, Zassenhaus conjecture for \(S_5\), Comm. Algebra 19 (1991), no. 8, 2353–2362.

    Article  MathSciNet  MATH  Google Scholar 

  53. L. Margolis, Subgroup isomorphism problem for units of integral group rings, J. Group Theory 20 (2017), no. 2, 289–307.

    Article  MathSciNet  MATH  Google Scholar 

  54. L. Margolis, A theorem of Hertweck on \(p\)-adic conjugacy, 11 pages, arXiv:1706.02117v1 [math.RA].

  55. L. Margolis, On the prime graph question for integral group rings of Conway simple groups, J. Symbolic Comput. 95 (2019), 162–176.

    Article  MathSciNet  MATH  Google Scholar 

  56. L. Margolis and Á. del Río, Finite subgroups of group rings: A survey, Adv. Group Theory Appl. 8 (2019), 1–37.

    MathSciNet  MATH  Google Scholar 

  57. L. Margolis and Á. del Río, Partial augmentations power property: a Zassenhaus conjecture related problem, J. Pure Appl. Algebra 223 (2019), no. 9, 4089–4101.

    Article  MathSciNet  MATH  Google Scholar 

  58. L. Margolis, Á. del Río, and M. Serrano, Zassenhaus conjecture on torsion units holds for \({\rm PSL}(2,p)\) with \(p\) a Fermat or Mersenne prime, J. Algebra 531 (2019), 320–335.

    Article  MathSciNet  MATH  Google Scholar 

  59. Z. Marciniak, J. Ritter, S. K. Sehgal, and A. Weiss, Torsion units in integral group rings of some metabelian groups. II, J. Number Theory 25 (1987), no. 3, 340–352.

  60. C. Polcino Milies and S. K. Sehgal, An introduction to group rings, Algebra and Applications, vol. 1, Kluwer Academic Publishers, Dordrecht, 2002.

  61. M. A. Salim, Torsion units in the integral group ring of the alternating group of degree 6, Comm. Algebra 35 (2007), no. 12, 4198–4204.

    Article  MathSciNet  MATH  Google Scholar 

  62. M. A. Salim, Kimmerle’s conjecture for integral group rings of some alternating groups, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 27 (2011), no. 1, 9–22.

  63. M. A. Salim, The prime graph conjecture for integral group rings of some alternating groups, Int. J. Group Theory 2 (2013), no. 1, 175–185.

    MathSciNet  MATH  Google Scholar 

  64. R. Sandling, Graham Higman’s thesis “Units in group rings”, Integral representations and applications (Oberwolfach, 1980), Lecture Notes in Math., vol. 882, Springer, Berlin-New York, 1981, pp. 93–116.

  65. S. K. Sehgal, Topics in group rings, Monographs and Textbooks in Pure and Applied Math., vol. 50, Marcel Dekker, Inc., New York, 1978.

    Google Scholar 

  66. S. K. Sehgal, Units in integral group rings, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 69, Longman Scientific & Technical, Harlow, 1993.

    Google Scholar 

  67. 4ti2 team, 4ti2—a software package for algebraic, geometric and combinatorial problems on linear spaces, Available at www.4ti2.de, Version 1.6.7.

  68. R. Wagner, Zassenhausvermutung über die Gruppen\(\operatorname{PSL}(2,p)\), Diplomarbeit, Universität Stuttgart, Mai 1995.

    Google Scholar 

  69. A. Weiss, Torsion units in integral group rings, J. Reine Angew. Math. 415 (1991), 175–187.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bächle.

Additional information

Communicated by Gadadhar Misra.

The second author is a postdoctoral researcher of the Research Foundation Flanders (FWO-Vlaanderen).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bächle, A., Margolis, L. From examples to methods: two cases from the study of units in integral group rings. Indian J Pure Appl Math 52, 669–686 (2021). https://doi.org/10.1007/s13226-021-00180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-021-00180-y

Keywords

Mathematics Subject Classification

Navigation