Skip to main content
Log in

On the Prime Graph Question for Integral Group Rings of 4-Primary Groups II

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

In this article the study of the Prime Graph Question for the integral group ring of almost simple groups which have an order divisible by exactly 4 different primes is continued. We provide more details on the recently developed “lattice method” which involves the calculation of Littlewood-Richardson coefficients. We apply the method obtaining results complementary to those previously obtained using the HeLP-method. In particular the “lattice method” is applied to infinite series of groups for the first time. We also prove the Zassenhaus Conjecture for four more simple groups. Furthermore we show that the Prime Graph Question has a positive answer around the vertex 3 provided the Sylow 3-subgroup is of order 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, P.J., Hobby, C.: A characterization of units in Z[A 4]. J. Algebra 66(2), 534–543 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bächle, A., Margolis, L.: HeLP – A GAP-package for torsion units in integral group rings. preprint, arXiv:1507.08174 [math.RT] p. 6 (2015)

  3. Bächle, A., Margolis, L.: HeLP – Hertweck-Luthar-Passi method, GAP package, Version 3.0 http://homepages.vub.ac.be/abachle/help/ (2016)

  4. Bächle, A., Margolis, L.: On the prime graph question for integral group rings of 4-primary groups I. Internat. J. Algebra Comput. 27(6), 731–767 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bächle, A., Margolis, L.: Rational conjugacy of torsion units in integral group rings of non-solvable groups. Proc. Edinb. Math. Soc. (2) 60(4), 813–830 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bovdi, V.A., Konovalov, A.B., Linton, S.: Torsion units in integral group ring of the Mathieu simple group M22. LMS J. Comput. Math. 11, 28–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Breuer, T.: The GAP character table library, version 1.2.1. http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib. GAP package (2012)

  8. Caicedo, M., Margolis, L., del Río, Á.: Zassenhaus conjecture for cyclic-by-abelian groups. J. Lond. Math. Soc. (2) 88(1), 65–78 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohn, J. A., Livingstone, D.: On the structure of group algebras. I. Canad. J. Math. 17, 583–593 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Curtis, C., Reiner, I.: With applications to finite groups and orders, Reprint of the 1981 original, A Wiley-Interscience Publication. Wiley, New York (1990)

    Google Scholar 

  11. Dieterich, E.: Representation types of group rings over complete discrete valuation rings. II. In: Orders and their Applications (Oberwolfach, 1984), Lecture Notes in Math., vol. 1142, pp. 112–125. Springer, Berlin (1985)

  12. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.8.3 http://www.gap-system.org (2016)

  13. Geck, M.: Irreducible Brauer characters of the 3-dimensional special unitary groups in nondefining characteristic. Comm. Algebra 18(2), 563–584 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gildea, J.: Zassenhaus conjecture for integral group ring of simple linear groups. J. Algebra Appl. 12(6), 1350,016, 10 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gudivok, P.: Representations of finite groups over number rings. Izv. Akad. Nauk SSSR, Ser. Mat. 31(4), 799–834 (1967). Russian. (Series also available in English.)

    MathSciNet  Google Scholar 

  16. Hertweck, M.: On the torsion units of some integral group rings. Algebra Colloq. 13(2), 329–348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hertweck, M.: Partial augmentations and Brauer character values of torsion units in group rings p. 16. Manuscript, arXiv:math/0612429v2 [math.RA] (2007)

  18. Hertweck, M.: Zassenhaus conjecture for A 6. Proc. Indian Acad. Sci. Math. Sci. 118(2), 189–195 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hertweck, M., Höfert, C., Kimmerle, W.: Finite groups of units and their composition factors in the integral group rings of the group P S L(2,q). J. Group Theory 12(6), 873–882 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Higman, G.: Units in Group Rings. D. phil. thesis, Oxford Univ (1940)

  21. Hughes, I., Pearson, K.R.: The group of units of the integral group ring Z S 3. Canad. Math. Bull. 15, 529–534 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huppert, B.: Endliche Gruppen. I Die Grundlehren der Mathematischen Wissenschaften, vol. 134. Springer-Verlag, Berlin-New York (1967)

    Google Scholar 

  23. Huppert, B., Blackburn, N.: Finite groups. II Die Grundlehren der Mathematischen Wissenschaften, vol. 242. Springer-Verlag, Berlin-New York (1982)

    Google Scholar 

  24. Huppert, B., Blackburn, N.: Finite groups. III Die Grundlehren der Mathematischen Wissenschaften, vol. 243. Springer-Verlag, Berlin-New York (1982)

    Google Scholar 

  25. Isaacs, I.M.: Character Theory of Finite Groups. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London (1976). Pure and Applied Mathematics, No. 69

    MATH  Google Scholar 

  26. Jespers, E., del Río, Á.: Group Ring Groups. Volume 1: Orders and Generic Constructions of Units. De Gruyter, Berlin (2016)

    MATH  Google Scholar 

  27. Kimmerle, W.: On the prime graph of the unit group of integral group rings of finite groups. In: Groups, Rings and Algebras, Contemp. Math., vol. 420, pp. 215–228. Amer. Math. Soc., Providence (2006)

  28. Kimmerle, W., Konovalov, A.: On the Gruenberg-Kegel graph of integral group rings of finite groups. Internat. J. Algebra Comput. 27(6), 619–631 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Luthar, I.S., Passi, I.B.S.: Zassenhaus conjecture for A 5. Proc. Indian Acad. Sci. Math. Sci. 99(1), 1–5 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Macdonald, I.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1995). With contributions by A. Zelevinsky, Oxford Science Publications

    Google Scholar 

  31. Marciniak, Z., Ritter, J., Sehgal, S., Weiss, A.: Torsion units in integral group rings of some metabelian groups. II. J. Number Theory 25(3), 340–352 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Margolis, L.: Torsionsuntergruppen in ganzzahligen Gruppenringen nicht auflösbarer Gruppen. Doktorarbeit, Universität Stuttgart http://elib.uni-stuttgart.de/opus/volltexte/2015/10270/ (2015)

  33. Margolis, L.: A Sylow theorem for the integral group ring of PSL(2,q). J. Algebra 445, 295–306 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mazurov, V, Khukhro, E.: Unsolved problems in Group Theory. The Kourovka Notebook. No. 18 (english version). arXiv:1401.0300v6 [math.GR] (2015)

  35. Navarro, G.: Characters and Blocks of Finite Groups London Mathematical Society Lecture Note Series, vol. 250. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  36. Neukirch, J.: Algebraic number theory Die Grundlehren der Mathematischen Wissenschaften, vol. 322. Springer-Verlag, Berlin (1999)

    Google Scholar 

  37. del Río, Á., Serrano, M.: On the torsion units of the integral group ring of finite projective special linear groups. Comm. Algebra 45(12), 5073–5087 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sandling, R.: Graham Higman’s thesis “Units in group rings”. In: Integral Representations and Applications (Oberwolfach, 1980), Lecture Notes in Math., vol. 882, pp. 93–116. Springer, Berlin-New York (1981)

  39. Weiss, A.: Torsion units in integral group rings. J. Reine Angew. Math. 415, 175–187 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very thankful to Markus Schmidmeier for providing us with the link between Littlewood-Richardson coefficients and the structure of finite \(\mathfrak {o}\)-modules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Margolis.

Additional information

Presented by: Steffen Koenig

The first author is supported by the Research Foundation Flanders (FWO - Vlaanderen). The second by the Marie-Curie Individual Fellowship ZC-DLV-705112 from the H2020 program of the European Commission.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bächle, A., Margolis, L. On the Prime Graph Question for Integral Group Rings of 4-Primary Groups II. Algebr Represent Theor 22, 437–457 (2019). https://doi.org/10.1007/s10468-018-9776-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-018-9776-6

Keywords

Mathematics Subject Classification (2010)

Navigation