Skip to main content
Log in

On the relationship between a quantum Markov semigroup and its representation via linear stochastic Schrödinger equations

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

A quantum Markov semigroup can be represented via classical diffusion processes solving a stochastic Schrödinger equation. In this paper we first prove that a quantum Markov semigroup is irreducible if and only if classical diffusion processes are total in the Hilbert space of the system. Then we study the relationship between irreducibility of a quantum Markov semigroup and properties of these diffusions such as accessibility, the Lie algebra rank condition, and irreducibility. We prove that all these properties are, in general, stronger than irreducibility of the quantum Markov semigroup, nevertheless, they are equivalent for some important classes of semigroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Accardi, F. Fagnola and S. Hachicha, Generic q-Markov semigroups and speed of convergence of q-algorithms, Infin. Dimen. Anal. Quant. Probab. Rel. Top., 9 (2006), 567–594.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Barchielli, C. Pellegrini and F. Petruccione, Quantum trajectories: memory and continuous observation, Phys. Rev. A, 86 (2012), 063814.

    Article  Google Scholar 

  3. A. Barchielli and V. P. Belavkin, Measurements continuous in time and a-posteriori states in quantum mechanics, J. Phys. A, 24 (1991), 1495–1514.

    Article  MathSciNet  Google Scholar 

  4. A. Barchielli and M. Gregoratti, Quantum trajectories and measurements in continuous time: the diffusive case, volume 782 of Lecture Notes in Physics, Springer, Berlin (2009).

    Book  Google Scholar 

  5. V. P. Belavkin, A new wave equation for a continuous nondemolition measurement, Phys. Lett. A, 140 (1989), 355–358.

    Article  MathSciNet  Google Scholar 

  6. B. V. R. Bhat, V. Liebscher and M. Skeide, Subsystems of Fock need not be Fock: Spatial CP-semigroups, Proc. Amer. Math. Soc., 138 (2010), 2443–2456.

    Article  MathSciNet  MATH  Google Scholar 

  7. H.-P. Breuer and F. Petruccione, The theory of open quantum systems, Oxford University Press, New York (2002).

    MATH  Google Scholar 

  8. R. Carbone, F. Fagnola and S. Hachicha, Generic quantum Markov semigroups: the Gaussian gauge invariant case, Open Syst. Inf. Dyn., 14 (2007), 425–444.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Carbone, E. Sasso and V. Umanità, On the asymptotic behavior of generic quantum Markov semigroups, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 17 (2014), 1450001.

    Article  MathSciNet  Google Scholar 

  10. J. Deschamps, F. Fagnola, E. Sasso and V. Umanità, Structure of norm-continuous QMS, arXiv: 1412.3239.

  11. F. Fagnola and S. Hachicha, Decomposition and classification of generic quantum Markov semigroups: the Gaussian gauge invariant case, Open Syst. Inf. Dyn., 19 (2012), 1250010.

    Article  MathSciNet  Google Scholar 

  12. F. Fagnola and R. Rebolledo, Subharmonic projections for a quantum Markov semigroup, J. Math. Phys., 43 (2002), 1074–1082.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Fagnola and R. Rebolledo, Notes on the qualitative behaviour of quantum Markov semigroups, In: S. Attal, A. Joye, C.-A. Pillet (eds.) Open quantum systems III-Recent Developments, Lecture Notes in Mathematics 1882 pp. 161–206.

  14. F. Fagnola and R. Rebolledo, Algebraic conditions for convergence of a quantum Markov semigroup to a steady state, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 11 (2008), 467–474.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Fagnola and R. Rebolledo, Entropy production for quantum Markov semigroups, Commun. Math. Phys., 335 (2015), 547–570, DOI: 10.1007/00220-015-2320-1, arXiv1212.1366.

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Fagnola and C. Mora, Stochastic Schrödinger equations with unbounded coefficients and applications to Ehrenfest-type theorems, ALEA, Lat. Am. J. Probab. Math. Stat., 10 (2013), 191–223.

    MathSciNet  MATH  Google Scholar 

  17. F. Fagnola and S. Wills, Solving quantum stochastic differential equations with unbounded coefficients, J. Funct. Anal., 198(2) (2003), 279–310.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Frigerio and M. Verri, Long-time asymptotic properties of dynamical semigroups on W*-algebras, Math. Z., 180 (1982), 275–286.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Goswami and K. B. Sinha, Quantum stochastic processes and noncommutative geometry, Cambridge University Press (2006).

    Google Scholar 

  20. S. Hachicha, Support projection of state and a quantum Lévy-Austin-Ornstein theorem, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 17 (2014), 1450020.

    Article  MathSciNet  Google Scholar 

  21. V. Jakšić, C.-A. Pillet and M. Westrich, Entropic fluctuations of quantum dynamical semigroups, J. Stat. Phys., 154(1-2) (2014), 153–187, arXiv:1305.4409v2.

    Article  MathSciNet  MATH  Google Scholar 

  22. V. N. Kolokoltsov, Localization and analytic properties of the solutions of the simplest quantum filtering equation, Rev. Math. Phys., 10 (1998), 801–828.

    Article  MathSciNet  Google Scholar 

  23. B. Kümmerer and H. Maassen, A pathwise ergodic theorem for quantum trajectories, J. Phys. A, 37 (2004), 11889–11896.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. M. Lindsay and S. Wills, Quantum stochastic operator cocycles via associated semigroups, Math. Proc. Cambridge Philos. Soc., 142 (2007), 535–556.

    Article  MathSciNet  MATH  Google Scholar 

  25. C. M. Mora, Heisenberg evolution of quantum observables represented by unbounded operators, J. Funct. Anal., 255 (2008), 3249–3273.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. M. Mora, Regularity of solutions to quantum master equations: a stochastic approach, Ann. Probab., 41 (2013), 1978–2012.

    Article  MathSciNet  MATH  Google Scholar 

  27. C. M. Mora and R. Rebolledo, Regularity of solutions to linear stochastic Schrödinger equations, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10 (2007), 237–259.

    Article  MathSciNet  MATH  Google Scholar 

  28. C. M. Mora and R. Rebolledo, Basic properties of nonlinear stochastic Schrödinger equations driven by Brownian motions, Ann. Appl. Probab., 18 (2008), 591–619.

    Article  MathSciNet  MATH  Google Scholar 

  29. K. R. Parthasarathy, An introduction to quantum stochastic calculus, Monographs in Mathematics, Vol. 85, 1992.

  30. C. Pellegrini, Existence, uniqueness and approximation of a stochastic Schrödinger equation: the diffusive case, Ann. Probab., 36 (2008), 2332–2353.

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Rey-Bellet, Ergodic properties of Markov processes, In: S. Attal, A. Joye, C.-A. Pillet (Eds.) Open quantum systems II, The Markovian Approach pp. 1–40. Springer 2006.

    Chapter  Google Scholar 

  32. Yu. L. Sachkov, Controllability of invariant systems on Lie groups and homogeneous spaces, J. Math. Sci. (New York), 100 (2000), 2355–2427.

    MathSciNet  MATH  Google Scholar 

  33. A. V. Skorohod, Linear stochastic differential equations and stochastic semigroups, Uspekhi Mat. Nauk., 37 (1982), 157–183.

    Google Scholar 

  34. H. Spohn, An algebraic condition for the approach to equilibrium of an open N-level system, Lett. Math. Phys., 2 (1977), 33–38.

    Article  MathSciNet  MATH  Google Scholar 

  35. D. W. Stroock and S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, Proc. 6th Berkeley Symp. Math. Stat. Probability III, pp. 333–359. Berkeley: University California Press 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Fagnola.

Additional information

Dedicated to Prof. Kalyan B. Sinha on occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagnola, F., Mora, C. On the relationship between a quantum Markov semigroup and its representation via linear stochastic Schrödinger equations. Indian J Pure Appl Math 46, 399–414 (2015). https://doi.org/10.1007/s13226-015-0142-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-015-0142-7

Keywords

Navigation