Skip to main content
Log in

Finite element method for a class of parabolic integro-differential equations with interfaces

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, convergence of finite element method for a class of parabolic integro-differential equations with discontinuous coefficients are analyzed. Optimal L 2(L 2) and L 2 (H 1) norms are shown to hold when the finite element space consists of piecewise linear functions on a mesh that do not require to fit exactly to the interface. Both continuous time and discrete time Galerkin methods are discussed for arbitrary shape but smooth interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams, Sobolev Spaces, Academic Press, 1975.

    MATH  Google Scholar 

  2. C. Attanayake and D. Senaratne, Convergence of an immersed finite element method for semilinear parabolic interface problems, Applied Mathematical Sciences, 5 (2011), 135–147.

    MATH  MathSciNet  Google Scholar 

  3. S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, Springer-Verlag, 1994.

    Book  MATH  Google Scholar 

  4. J. R. Cannon and Y. P. Lin, A priori L 2 error estimates for finite element methods for nonlinear diffusion equations with memory, SIAM J. Numer. Anal., 27 (1990), 595–607.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Chen and P. G. Shih Tsimin, Finite element methods for integro-differential equations, London, World Scientific, 1997.

    Google Scholar 

  6. C. Chen, V. Thomée and L. B. Wahlbin, Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel, Math. Comp., 58 (1992), 587–602.

    Article  MATH  MathSciNet  Google Scholar 

  7. Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math., 79 (1998), 175–202.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. G. Ciarlet, The finite element method for elliptic problems, North Holland, 1978.

    MATH  Google Scholar 

  9. B. R. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z Angew. Math., 18 (1967), 199–208.

    Article  MathSciNet  Google Scholar 

  10. B. Deka and R. K. Sinha, L (L 2) and L (H 1) norms error estimates in finite element method for linear parabolic interface problems, Numer. Funct. Anal. Optim., 32 (2011), 267–285.

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Deka and T. Ahmed, Finite element methods for semilinear elliptic problems with smooth interfaces, Indian J. Pure Appl. Math., 42 (2011), 205–223.

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Deka, R. K. Sinha and T. Ahmed, A new technique in error analysis of parabolic interface problems: optimal L (L 2) and L (H 1) norms error estimates, submitted.

  13. O. A. Ladyzhenskaya, V. Ya. Rivkind and N. N. Ural’ceva, The classical solvability of diffraction problems. Trudy Mat. Inst. Steklov, 92 (1966), 116–146.

    MATH  MathSciNet  Google Scholar 

  14. Y. Lin, V. Thomée and L. B. Wahlbin, Ritz-Volterra projections to finite-element spaces and applications to integro-differential and related equations, SIAMJ. Numer. Anal., 28 (1991), 1047–1070.

    Article  MATH  Google Scholar 

  15. A. K. Pani, V. Thomée and L. B. Wahlbin, Numerical methods for hyperbolic and parabolic integro-differential equations, J. Integral Equ. Appl., 4 (1992), 533–584.

    Article  MATH  Google Scholar 

  16. D. Pradhan, N. Nataraj and A. K. Pani, An explicit/implicit Galerkin domain decomposition procedure for parabolic integro-differential equations, J. Appl. Math. Comput., 28 (2008), 295–311.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. K. Sinha and B. Deka, Optimal error estimates for linear parabolic problems with discontinuous coefficients, SIAMJ. Numer. Anal., 43 (2005), 733–749.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. K. Sinha and B. Deka, A priori error estimates in finite element method for non-selfadjoint elliptic and parabolic interface problems, Calcolo, 43 (2006), 253–278.

    Article  MATH  MathSciNet  Google Scholar 

  19. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.

    MATH  Google Scholar 

  20. V. Thomée, Galerkin finite element methods for parabolic problems, Springer-Verlag, 1997.

    Book  MATH  Google Scholar 

  21. V. Thomée and N. Y. Zhang, Error estimates for semidiscrete finite element methods for parabolic integro-differential equations, Math. Comp., 53 (1989), 121–139.

    Article  MATH  MathSciNet  Google Scholar 

  22. E. G. Yanik and G. Fairweather, Finite element methods for parabolic and hyperbolic partial integro-differential equations, Nonlinear Anal., 12 (1988), 785–809.

    Article  MATH  MathSciNet  Google Scholar 

  23. N. Y Zhang, On fully discrete Galerkin approximations for partial integro-differential equations of parabolic type, Math. Comp., 60 (1993), 133–166.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Deka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deka, B., Deka, R.C. Finite element method for a class of parabolic integro-differential equations with interfaces. Indian J Pure Appl Math 44, 823–847 (2013). https://doi.org/10.1007/s13226-013-0045-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-013-0045-4

Key words

Navigation