, Volume 18, Issue 1, pp 27–37 | Cite as

Semantic Data Management for Experimental Manufacturing Technologies

  • Nasr Kasrin
  • Maliha Qureshi
  • Simon Steuer
  • Daniela Nicklas


Experimental manufacturing technologies play a significant role in improving production processes. For example, the microwave assisted manufacturing of composites can save energy and reduce turn-around times compared to the traditional heating in ovens. However, since this technology is not yet well-understood, it requires more research and development activities (e.g., simulation or production experiments) to enable stable and efficient production with controlled product quality. These activities span multiple divisions over (possibly) multiple organizations and require close cooperation and communication. In addition this process proceeds in an iterative manner and produces a lot of data and documents on the way. From our practical experience working in such a project, we identified knowledge gaps and communication challenges, many of which can be overcome with the support of IT Knowledge Management Systems.

The contribution of this paper is twofold: first, we propose a system design and domain modeling framework for developing semantic data management systems. Second, we apply the framework to develop a system with state-of-the-art technology practices. The system enriches data with semantic metadata, and manages heterogeneous data forms (structured and unstructured) using polyglot persistence and a data lake. Moreover, the system is modular and service-oriented; it can easily integrate with existing systems in the manufacturing environment via HTTP interfaces. The example use case for the proposed system involves simulations and experiments on the microwave assisted heating of composites as carried out in the scope of the Horizon 2020 project “SIMUTOOL” (


Knowledge Management Semantic Data Management Data Lakes Digital Manufacturing Industry 4.0 Information Systems 



The authors would like to thank the two anonymous reviewers for their valuable comments, as well as Eugene Yip and Rayan Alagbari for proofreading the paper in such a short notice.


  1. 1.
    Alavi M et al (2001) Review: knowledge management and knowledge management systems: conceptual foundations and research issues. MIS Q 25(1):107–136CrossRefGoogle Scholar
  2. 2.
    Boudreau MC et al (1998) Going Global: using information technology to advance the competitiveness of the virtual transnational organization. Acad Manag Perspect 12(4):120–128CrossRefGoogle Scholar
  3. 3.
    Buneman P et al (2006) Provenance management in Curated databases. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data SIGMOD ’06. ACM, New York, pp 539–550CrossRefGoogle Scholar
  4. 4.
    Cavalcante E et al (2015) An analysis of reference architectures for the Internet of things. In: Exploring component-based techniques for constructing reference architectures (cobRA). ACM, New York, pp 13–16Google Scholar
  5. 5.
    Chervenak A et al (2000) The data grid: towards an architecture for the distributed management and analysis of large scientific datasets. J Netw Comput Appl 23(3):187–200CrossRefGoogle Scholar
  6. 6.
    Civili C et al (2013) MASTRO STUDIO: managing ontology-based data access applications. Proceedings VLDB Endowment 6(12):1314–1317CrossRefGoogle Scholar
  7. 7.
    Coppens S et al (2013) Reasoning over SPARQL. In: Linked data on the web, vol 996. CEUR-WS, Rio de JaneiroGoogle Scholar
  8. 8.
    Daraio C et al (2016) The advantages of an Ontology-Based Data Management approach: openness, interoperability and data quality. Scientometrics 108(1):441–455CrossRefGoogle Scholar
  9. 9.
    Davenport TH et al (1998) Successful knowledge management projects. Sloan Manage Rev 39(2):43–57Google Scholar
  10. 10.
    Dean M et al (2004) OWL web ontology language referenceGoogle Scholar
  11. 11.
    Gray J et al (2005) Scientific data management in the coming decade. SIGMOD Rec 34(4):34–41CrossRefGoogle Scholar
  12. 12.
    Jezek P, Moucek R (2015) Semantic framework for mapping object-oriented model to semantic web languages. Front Neuroinform 9:3Google Scholar
  13. 13.
    Kharlamov E et al (2016) Towards analytics aware ontology based access to static and streaming data. In: The semantic web – ISWC 2016. Lecture notes in computer science. Springer, Cham, pp 344–362CrossRefGoogle Scholar
  14. 14.
    Kharlamov E et al (2017) Ontology based data access in statoil. Web Semant 44:3–36CrossRefGoogle Scholar
  15. 15.
    Lee SM, Hong S (2002) An enterprise-wide knowledge management system infrastructure. Ind Manag Data Syst 102(1):17–25CrossRefGoogle Scholar
  16. 16.
    Li YF et al (2010) PODD – towards an extensible, domain-agnostic scientific data management system. In: IEEE Sixth International Conference on e‑Science. IEEE, Brisbane, pp 137–144Google Scholar
  17. 17.
    Chuttur MY (2013) Perceived helpfulness of dublin core semantics: an empirical study. In: Metadata and semantics research. MTSR 2013, vol 390. Springer, Cham, pp 135–145CrossRefGoogle Scholar
  18. 18.
    O’Leary D (1998) Enterprise knowledge management. Computer (Long Beach Calif) 31(3):54–61Google Scholar
  19. 19.
    Panchal PR, Swaminarayan R (2017) Execution of SPARQL query using apache Jena Fuseki server in AISHE domain. Int J Adv Eng Res Dev 4(9):387–394Google Scholar
  20. 20.
    Pawlowski A et al (2009) Simulation of greenhouse climate monitoring and control with wireless sensor network and event-based control. Sensors 9(1):232–252MathSciNetCrossRefGoogle Scholar
  21. 21.
    Poggi A et al (2008) Linking data to ontologies. In: Journal on data semantics X. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp 133–173CrossRefGoogle Scholar
  22. 22.
    Rodriguez-Gonzalez A et al (2014) Special issue on exploiting semantic technologies with particularization on linked data over grid and cloud architectures. Future Gener Comput Syst 32(C):260–262Google Scholar
  23. 23.
    Sadalage PJ, Fowler M (2012) NoSQL distilled: a brief guide to the emerging world of polyglot persistence, 1st edn. Addison-Wesley, BostonGoogle Scholar
  24. 24.
    Schaarschmidt M, Gessert F et al (2015) Towards automated polyglot persistence. Workshop Paper, Datenbanksysteme für Business, Technologie und Web (BTW). Hamburg,Google Scholar
  25. 25.
    Sengstock C, Mathis C (2017) SAP HANA Vora: a distributed computing platform for enterprise data lakes. In: Mitschang B, et al (Eds) Datenbanksysteme für Business, Technologie und Web (BTW 2017). Lecture Notes in Informatics (LNI), Gesellschaft für Informatik e.V., Bonn, S 521Google Scholar
  26. 26.
    Steuer S et al (2016) Challenges and design goals for an architecture of a privacy-preserving smart city lab. Datenbank Spektrum 16(2):147–156CrossRefGoogle Scholar
  27. 27.
    Tonne A (2017) Big data is no longer equivalent to Hadoop in the industry. In: Mitschang B, et al (Eds) Datenbanksysteme für Business, Technologie und Web (BTW 2017). Lecture Notes in Informatics (LNI), Gesellschaft für Informatik e.V., Bonn, S 523–524Google Scholar
  28. 28.
    Carnegie Mellon University (2017) Data custodians – information security office - computing services – Carnegie Mellon University. Accessed: 19.01.2018Google Scholar
  29. 29.
    Carnegie Mellon University (2017) Data stewards – information security office – computing services – Carnegie Mellon University. Accessed: 19.01.2018Google Scholar
  30. 30.
    NC State University (2016) REG 08.00.03 – data management procedures – policies, regulations & rules. Accessed: 19.01.2018Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Nasr Kasrin
    • 1
  • Maliha Qureshi
    • 1
  • Simon Steuer
    • 1
  • Daniela Nicklas
    • 1
  1. 1.University of BambergBambergGermany

Personalised recommendations