Holzinger A, Langs G, Denk H, Zatloukal K, Mueller H (2019) Causability and explainability of AI in medicine. Wiley Interdiscip Rev Data Min Knowl Discov 9(4)
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
Article
Google Scholar
Hinton G, Deng L, Dong Y, Dahl GE, Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN, Kingsbury B (2012) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag 29(6):82–97
Article
Google Scholar
Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D (2017) Mastering the game of go without human knowledge. Nature 550(7676):354–359
Article
Google Scholar
Richards N, Moriarty DE, Miikkulainen R (1998) Evolving neural networks to play go. Appl Intell 8(1):85–96
Article
Google Scholar
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118
Article
Google Scholar
Setio AAA, Traverso A, De Bel T, Berens MSN, van den Bogaard C, Cerello P, Chen H, Dou Q, Fantacci ME, Geurts B (2017) Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal 42:1–13
Article
Google Scholar
Ghafoorian M, Karssemeijer N, Heskes T, van Uden IWM, Sanchez CI, Litjens G, de Leeuw F-E, van Ginneken B, Marchiori E, Platel B (2017) Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities. Sci Rep 7(1):5110
Article
Google Scholar
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Snchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88
Article
Google Scholar
Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F, Jung K, Heller K, Kale D, Saeed M, Ossorio PN, Thadaney-Israni S, Goldenberg A (2019) Do no harm: a roadmap for responsible machine learning for health care. Nat Med 25(9):1337–1340
Article
Google Scholar
Carrington AM (2018) Kernel methods and measures for classification with transparency, interpretability and accuracy in health care. PhD thesis, The University of Waterloo
Bologna G, Hayashi Y (2017) Characterization of symbolic rules embedded in deep dimlp networks: a challenge to transparency of deep learning. J Artif Intell Soft Comput Res 7(4):265–286
Article
Google Scholar
Holzinger A (2016) Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform 3(2):119–131
Article
Google Scholar
Valdez AC, Ziefle M, Verbert K, Felfernig A, Andreas H (2016) Recommender systems for health informatics: state-of-the-art and future perspectives. In: Andreas H (ed) Machine learning for health informatics, vol 9605. Lecture Notes in Artificial Intelligence LNAI. Springer, Berlin, pp 391–414
Chapter
Google Scholar
Teso S, Kersting K (2019) Explanatory interactive machine learning. In: AIES19 Proceedings of the 2019 AAAI/ACM conference on AI, ethics, and society. AAAI
Holzinger A, Plass M, Kickmeier-Rust M, Holzinger K, Crian GC, Pintea C-M, Palade V (2019) Interactive machine learning: experimental evidence for the human in the algorithmic loop. Appl Intell 49(7):2401–2414
Article
Google Scholar
Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as IQ-test for machine learning. In International cross-domain conference for machine learning and knowledge extraction, Lecture Notes in Computer Science LNCS 11713. Springer, pp 1–14
Hassler AP, Menasalvas E, Garcia-Garcia FJ, Rodriguez-Manas L, Holzinger A (2019) Importance of medical data preprocessing in predictive modeling and risk factor discovery for the frailty syndrome. Springer/Nature BMC Med Inform Decis Making 19(1):33
Article
Google Scholar
Holzinger A, Kieseberg P, Weippl E, Tjoa AM (2018) Current advances, trends and challenges of machine learning and knowledge extraction: from machine learning to explainable AI. In: Springer Lecture Notes in Computer Science LNCS 11015. Springer, pp 1–8
Doshi-Velez F, Kim B (2017) Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608
Chander A, Srinivasan R (2018) Evaluating explanations by cognitive value. In: International cross-domain conference for machine learning and knowledge extraction. Springer, Berlin, pp 314–328
Lou Y, Caruana R, Gehrke J (2012) Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 150–158
Ribeiro MT, Singh S, Guestrin C (2016) Why should i trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1135–1144
Narayanan M, Chen E, He J, Kim B, Gershman S, Doshi-Velez F (2018) How do humans understand explanations from machine learning systems? An evaluation of the human-interpretability of explanation. arXiv preprint arXiv:1802.00682
Brooke J (1996) SUS : a quick and dirty usability scale. In: Jordan PW, Thomas B, Weerdmeester BA, McClelland IL (eds) Usability evaluation in industry. Taylor and Francis, London, pp 189–194
Google Scholar
Gelman A, Carlin JB, Stern HS, Dunson DB, Rubin DB (2013) Fundamentals of Bayesian data analysis: chapter 5 Hierarchical models. CRC Press, ISBN 978-1-58488-388
Fieguth P (2010) Statistical image processing and multidimensional modeling. Springer Science and Business Media, New York
MATH
Google Scholar
Shashanka M, Raj B, Smaragdis P (2008) Probabilistic latent variable models as nonnegative factorizations. Comput Intell Neurosci
Bangor A, Kortum PT, Miller JT (2008) An empirical evaluation of the system usability scale. Int J Hum Comput Interact 24(6):574–594
Article
Google Scholar
Holzinger A (2002) User-centered interface design for disabled and elderly people: First experiences with designing a patient communication system (PACOSY). In: Computer helping people with special needs, ICCHP 2002, Lecture Notes in Computer Science (LNCS 2398). Springer, pp 34–41
Lewis JR, Sauro J (2009) The factor structure of the system usability scale. In: International conference on human centered design, pp 94–103
Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 140:1–55
Google Scholar
Genest J, Frohlich J, Fodor G, McPherson R (2003) Recommendations for the management of dyslipidemia and the prevention of cardiovascular disease: summary of the 2003 update. CMAJ 169(9):921–924
Google Scholar
Grundy SM, Pasternak R, Greenland P, Smith S, Fuster V (1999) Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: a statement for healthcare professionals from the american heart association and the american college of cardiology. J Am Coll Cardiol 34(4):1348–1359
Article
Google Scholar
Jamieson S (2004) Likert scales: how to (ab)use them. Med Educ 38(12):1217–1218
Article
Google Scholar