Skip to main content

Advertisement

Log in

A novel isolate of Clostridium butyricum for efficient butyric acid production by xylose fermentation

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Bacterial fermentation of lignocellulose has been regarded as a sustainable approach to butyric acid production. However, the yield of butyric acid is hindered by the conversion efficiency of hydrolysate xylose. A mesophilic alkaline-tolerant strain designated as Clostridium butyricum B10 was isolated by xylose fermentation with acetic and butyric acids as the principal liquid products. To enhance butyric acid production, performance of the strain in batch fermentation was evaluated with various temperatures (20–47 °C), initial pH (5.0–10.0), and xylose concentration (6–20 g/L). The results showed that the optimal temperature, initial pH, and xylose concentration for butyric acid production were 37 °C, 9.0, and 8.00 g/L, respectively. Under the optimal condition, the yield and specific yield of butyric acid reached about 2.58 g/L and 0.36 g/g xylose, respectively, with 75.00% butyric acid in the total volatile fatty acids. As renewable energy, hydrogen was also collected from the xylose fermentation with a yield of about 73.86 mmol/L. The kinetics of growth and product formation indicated that the maximal cell growth rate (μ m ) and the specific butyric acid yield were 0.1466 h−1 and 3.6274 g/g cell (dry weight), respectively. The better performance in xylose fermentation showed C. butyricum B10 a potential application in efficient butyric acid production from lignocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ai B, Li J, Chi X, Meng J, Liu C, Shi E (2014) Butyric acid fermentation of sodium hydroxide pretreated rice straw with undefined mixed culture. J Microbiol Biotechnol 24(5):629–638

    Article  PubMed  CAS  Google Scholar 

  • An D, Li Q, Wang X, Yang H, Guo L (2014) Characterization on hydrogen production performance of a newly isolated Clostridium beijerinckii YA001 using xylose. Int J Hydrogen Energ 39(35):19928–19936

    Article  CAS  Google Scholar 

  • Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Bio 3(2):117–129

    Article  CAS  Google Scholar 

  • Angenent LT, Karim K, AlDahhan MH, Wrenn BA, DomíguezEspinosam R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477

    Article  PubMed  CAS  Google Scholar 

  • Baroi GN, Baumann I, Westermann P, Gavala HN, Schnürer A, Verstraete W (2015) Butyric acid fermentation from pretreated and hydrolysed wheat straw by an adapted Clostridium tyrobutyricum strain. Microb Biotechnol 8(5):874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Da SL, Honorato TL, Cavalcante RS, Franco TT, Rodrigues S (2012) Effect of pH and temperature on enzyme activity of Chitosanase produced under solid stated fermentation by Trichoderma spp. Indian J Microbiol 52(1):60–65

    Article  CAS  Google Scholar 

  • Forrest AK, Sierra R, Holtzapple MT (2010) Suitability of pineapple, Aloe vera, molasses, glycerol, and office paper as substrates in the MixAlco process™. Biomass Bioenergy 34(8):1195–1200

    Article  CAS  Google Scholar 

  • Fu H, Yang ST, Wang M, Wang J, Tang IC (2017) Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization. Bioresour Technol 234:389–396

    Article  PubMed  CAS  Google Scholar 

  • González-Pajuelo M, Andrade JC, Vasconcelos I (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31(9):442–446

    Article  PubMed  CAS  Google Scholar 

  • Hahnke S, Striesow J, Elvert M, Mollar XP, Klocke M (2014) Clostridium bornimense sp. nov., isolated from a mesophilic, two-phase, laboratory-scale biogas reactor. Int J Syst Evol Micr 64(Pt 8):2792

    Article  CAS  Google Scholar 

  • Jiang L, Wang J, Liang S, Wang X, Cen P, Xu Z (2010) Production of butyric acid from glucose and xylose with immobilized cells of Clostridium tyrobutyricum in a fibrous-bed bioreactor. Appl Biochem Biotechnol 160(2):350

    Article  PubMed  CAS  Google Scholar 

  • Jo JH, Lee DS, Park JM (2008) The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Bioresour Technol 99(17):8485–8491

    Article  PubMed  CAS  Google Scholar 

  • Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6(1):1–10

    Article  CAS  Google Scholar 

  • Junghare M, Subudhi S, Lal B (2012) Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: optimization of process parameters. Int J Hydrog Energy 37(4):3160–3168

    Article  CAS  Google Scholar 

  • Khamtib S, Reungsang A (2012) Biohydrogen production from xylose by Thermoanaerobacterium thermosaccharolyticum KKU19 isolated from hot spring sediment. Int J Hydrogen Energy 37(17):12219–12228

    Article  CAS  Google Scholar 

  • Khanal SK, Chen WH, Li L, Sung S (2004) Biological hydrogen production: effects of pH and intermediate products. Int J Hydrogen Energy 29:1123–1131

    CAS  Google Scholar 

  • Liu X, Yang ST (2006) Kinetics of butyric acid fermentation of glucose and xylose by Clostridium tyrobutyricum wild type and mutant. Process Biochem 41(4):801–808

    Article  CAS  Google Scholar 

  • Liu H, Hu H, Jin Y, Yue X, Deng L, Wang F, Tan T (2017) Co-fermentation of a mixture of glucose and xylose to fumaric acid by Rhizopus arrhizus RH 7-13-9. Bioresour Technol 233:30

    Article  PubMed  CAS  Google Scholar 

  • Lo YC, Chen WM, Hung CH, Chen SD, Chang JS (2008) Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Water Res 42(4–5):827–842

    Article  PubMed  CAS  Google Scholar 

  • Luedeking R, Piret EL (2000) A kinetic study of the lactic acid fermentation. Batch process at controlled pH. Biotechnol Bioeng 67(6):636–644

    Article  PubMed  CAS  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust 38(4):522–550

    Article  CAS  Google Scholar 

  • Pagliano G, Ventorino V, Panico A, Pepe O (2017) Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnol Biofuel 10(1):113

    Article  Google Scholar 

  • Park GC, Jang SJ, Min JL, Kook JK, Min JK, Kim YS, Yang NW, Lee HS, Kang SH, Park G (2015) Comparison of the Vitek 2, API 20A, and 16s rRNA gene sequencing for the identification of anaerobic Bacteria. J Cytol 18(1):55–59

    Google Scholar 

  • Ren N, Cao G, Wang A, Lee DJ, Guo W, Zhu Y (2008) Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 33(21):6124–6132

    Article  CAS  Google Scholar 

  • Rogers P, Chen JS, Zidwick MJ (2006) Organic Acid and Solvent Production. In: Dworkin M (eds) The Prokaryotes. Springer, New York, pp 511–755

  • Saratale GD, Jung MY, Oh MK (2016) Reutilization of green liquor chemicals for pretreatment of whole rice waste biomass and its application to 2,3-butanediol production. Bioresour Technol 205:90

    Article  PubMed  CAS  Google Scholar 

  • Silva LAO, Terrasan CRF, Carmona EC (2015) Purification and characterization of xylanases from Trichoderma inhamatum. Electron J Biotechnol 18(4):307–313

    Article  CAS  Google Scholar 

  • Song H, Eom MH, Lee S, Lee J, Cho JH, Seung D (2010) Modeling of batch experimental kinetics and application to fed-batch fermentation of Clostridium tyrobutyricum for enhanced butyric acid production. Biochem Eng J 53:71–76

    Article  CAS  Google Scholar 

  • Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (1981) The prokaryotes. A handbook on habits, isolation, and identification of bacteria. Q Rev Biol

  • Ventorino V, Ionata E, Birolo L, Montella S, Marcolongo L et al (2016) Lignocellulose-adapted endo-cellulase producing Streptomyces strains for bioconversion of cellulose-based materials. Front Microbiol 7:2061. https://doi.org/10.3389/fmicb.2016.02061

  • Ventorino V, Robertiello A, Cimini D, Argenzio O et al (2017) Bio-based succinate production from Arundo donax hydrolysate with the new natural succinic acid-producing strain Basfia succiniciproducens BPP7. Bioenergy Res 10(2):488–498

    Article  CAS  Google Scholar 

  • Verhaart MRA, Bielen AAM, van der Oost J, Stams AJM, Kengen SWM (2010) Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environ Technol 31(8–9):993–1003

    Article  PubMed  CAS  Google Scholar 

  • Weiss RM, Ollis DF (1980) Extracellular microbial polysaccharides. I. Substrate, biomass, and product kinetic equations for batch xanthan gum fermentation. Biotechnol Bioeng 22(4):859–873

    Article  CAS  Google Scholar 

  • Wu Z, Yang ST (2003) Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum. Biotechnol Bioeng 82(1):93–102

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Wang J (2017) Isolation and characterization of a novel strain Clostridium butyricum INET1 for fermentative hydrogen production. Int J Hydrogen Energy 42(17)

  • Zhang C, Yang H, Yang F, Ma Y (2009a) Current progress on butyric acid production by fermentation. Curr Microbiol 59(6):656–663

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Yang H, Yang F, Liu W, Zhang Y (2009b) Optimization of medium composition for butyric acid production by Clostridium thermobutyricum using response surface methodology. Bioresour Technol 100:4284–4288

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Yang ST (2003) Adaptation of Clostridium tyrobutyricum for enhanced tolerance to butyric acid in a fibrous-bed bioreactor. Biotechnol Prog 19(2):365

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Yang ST (2004) Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J Biotechnol 110(2):143–157

    Article  PubMed  CAS  Google Scholar 

  • Zigová J, Šturdík E (2000) Advances in biotechnological production of butyric acid. J Ind Microbiol Biotechnol 24(3):153–160

    Article  Google Scholar 

Download references

Funding

This work was supported financially by National Natural Science Foundation of China (Grant No. 51478141) and the State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) (Grant No. 2016DX06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianzheng Li or Juanjuan Qu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, J., Chi, X. et al. A novel isolate of Clostridium butyricum for efficient butyric acid production by xylose fermentation. Ann Microbiol 68, 321–330 (2018). https://doi.org/10.1007/s13213-018-1340-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-018-1340-4

Keywords

Navigation