Skip to main content

Advertisement

Log in

Review of processing and analytical methods for Francisella tularensis in soil and water

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The etiological agent of tularemia, Francisella tularensis, is a resilient organism within the environment and can be acquired in many ways (infectious aerosols and dust, contaminated food and water, infected carcasses, and arthropod bites). However, isolating F. tularensis from environmental samples can be challenging due to its nutritionally fastidious and slow-growing nature. In order to determine the current state of the science regarding available processing and analytical methods for detection and recovery of F. tularensis from water and soil matrices, a review of the literature was conducted. During the review, analysis via culture, immunoassays, and genomic identification were the methods most commonly found for F. tularensis detection within environmental samples. Other methods included combined culture and genomic analysis for rapid quantification of viable microorganisms and use of one assay to identify multiple pathogens from a single sample. Gaps in the literature that were identified during this review suggest that further work to integrate culture and genomic identification would advance our ability to detect and to assess the viability of Francisella spp. The optimization of DNA extraction, whole genome amplification with inhibition-resistant polymerases, and multiagent microarray detection would also advance biothreat detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd H, Johansson T, Golovliov I, Sandstrom G, Forsman M (2003) Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl Environ Microbiol 69(1):600–606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ahlinder J, Ohrman C, Svensson K, Lindgren P, Johansson A, Forsman M, Larsson P, Sjodin A (2012) Increased knowledge of Francisella genus diversity highlights the benefits of optimised DNA-based assays. BMC Microbiol 12:220. doi:10.1186/1471-2180-12-220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anda P, Segura del Pozo J, Diaz Garcia JM, Escudero R, Garcia Pena FJ, Lopez Velasco MC, Sellek RE, Jimenez Chillaron MR, Sanchez Serrano LP, Martinez Navarro JF (2001) Waterborne outbreak of tularemia associated with crayfish fishing. Emerg Infect Dis 7(3 Suppl):575–582. doi:10.3201/eid0707.010740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bader DE, Fisher GR, McLaws LJ (2003) Molecular genetic analysis of killed biological agents in sample unknowns: NATO SIBCA Exercise III. DRDCSuffield TR-2003-043. Defense R&D Canada, Suffield

  • Balestrazzi A, Bonadei M, Calvio C, Galizzi A, Carbonera D (2009) DNA extraction from soil: comparison of different methods using spore-forming bacteria and the swrAA gene as indicators. Ann Microbiol 59(4):827–832

    Article  CAS  Google Scholar 

  • Barns SM, Grow CC, Okinaka RT, Keim P, Kuske CR (2005) Detection of diverse new Francisella-like bacteria in environmental samples. Appl Environ Microbiol 71(9):5494–5500. doi:10.1128/AEM.71.9.5494-5500.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berdal BP, Mehl R, Haaheim H, Loksa M, Grunow R, Burans J, Morgan C, Meyer H (2000) Field detection of Francisella tularensis. Scand J Infect Dis 32(3):287–291

    Article  CAS  PubMed  Google Scholar 

  • Berrada ZL, Telford SR III (2010) Diversity of Francisella species in environmental samples from Martha’s Vineyard, Massachusetts. Microb Ecol 59(2):277–283. doi:10.1007/s00248-009-9568-y

    Article  PubMed Central  PubMed  Google Scholar 

  • Berrada ZL, Telford SR III (2011) Survival of Francisella tularensis type a in brackish-water. Arch Microbiol 193(3):223–226. doi:10.1007/s00203-010-0655-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brett ME, Respicio-Kingry LB, Yendell S, Ratard R, Hand J, Balsamo G, Scott-Waldron C, O’Neal C, Kidwell D, Yockey B, Singh P, Carpenter J, Hill V, Petersen JM, Mead P (2014) Outbreak of Francisella novicida bacteremia among inmates at a Louisiana correctional facility. Clin Infect Dis 59(6):826–833. doi:10.1093/cid/ciu430

    Article  CAS  PubMed  Google Scholar 

  • Brinkman NE, Francisco R, Nichols TL, Robinson D, Schaefer FW 3rd, Schaudies RP, Villegas EN (2013) Detection of multiple waterborne pathogens using microsequencing arrays. J Appl Microbiol 114(2):564–573. doi:10.1111/jam.12073

    Article  CAS  PubMed  Google Scholar 

  • Broman T, Thelaus J, Andersson AC, Backman S, Wikstrom P, Larsson E, Granberg M, Karlsson L, Back E, Eliasson H, Mattsson R, Sjostedt A, Forsman M (2011) Molecular detection of persistent Francisella tularensis subspecies holarctica in natural waters. Int J Microbiol. doi:10.1155/2011/851946

    PubMed Central  PubMed  Google Scholar 

  • Buzard GS, Baker D, Wolcott MJ, Norwood DA, Dauphin LA (2012) Multi-platform comparison of ten commercial master mixes for probe-based real-time polymerase chain reaction detection of bioterrorism threat agents for surge preparedness. Forensic Sci Int 223(1–3):292–297. doi:10.1016/j.forsciint.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  • CDC (2011) Tularemia (fact sheet). Available at: http://www.cdc.gov/tularemia/transmission/index.html

  • CDC (2013) Tularemia—United States, 2001–2010. Morbidity and Mortality Weekly Report 62:963–966http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6247a5.htm

  • Cooper KL, Bandara AB, Wang Y, Wang A, Inzana TJ (2011) Photonic biosensor assays to detect and distinguish subspecies of Francisella tularensis. Sensors 11(3):3004–3019. doi:10.3390/s110303004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davis-Hoover W, Wade WG, Li Y, Biggs TD, Koga PG (2006) Persistence of Bacillus anthracis spores and Clostridium botulinum and destruction of Francisella tularensis and Yersinia pestis in municipal solid waste landfill leachates. In: Fourth intercontinental landfill research symposium, Gallivare (Lapland), Sweden

  • Day JB, Whiting RC (2009) Development of a macrophage cell culture method to isolate and enrich Francisella tularensis from food matrices for subsequent detection by real-time PCR. J Food Prot 72(6):1156–1164

    CAS  PubMed  Google Scholar 

  • Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P, Hirsch PR, Vogel TM (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77(4):1315–1324. doi:10.1128/AEM.01526-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dennis DT, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Friendlander AM, Hauer J, Layton M, Lillibridge SR, McDade JE, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Tonat K (2001) Tularemia as a biological weapon: medical and public health management. JAMA 285:2763–2773

    Article  CAS  PubMed  Google Scholar 

  • DHHS (2012) Possession, use, and transfer of select agents and toxins; biennial review. Fed Regist 77(194):61083–61115

    Google Scholar 

  • Duncan DD, Vogler AJ, Wolcott MJ, Li F, Sarovich DS, Birdsell DN, Watson LM, Hall TA, Sampath R, Housley R, Blyn LB, Hofstadler SA, Ecker DJ, Keim P, Wagner DM, Eshoo MW (2013) Identification and typing of Francisella tularensis with a highly automated genotyping assay. Lett Appl Microbiol 56(2):128–134. doi:10.1111/lam.12022

    Article  CAS  PubMed  Google Scholar 

  • Durham-Colleran MW, Verhoeven AB, van Hoek ML (2010) Francisella novicida forms in vitro biofilms mediated by an orphan response regulator. Microb Ecol 59(3):457–465. doi:10.1007/s00248-009-9586-9

    Article  PubMed  Google Scholar 

  • EPA (2011) Comparison of ultrafiltration techniques for recovering biothreat agents in water. U.S. Environmental Protection Agency. EPA600/R-11/103

  • EPA (2012) Final study report: development for optimum recovery of Yersinia pestis from transport media and swabs. US Environmental Protection Agency. EPA/600/R-12/620

  • Escudero R, Toledo A, Gil H, Kovacsova K, Rodriguez-Vargas M, Jado I, Garcia-Amil C, Lobo B, Bhide M, Anda P (2008) Molecular method for discrimination between Francisella tularensis and Francisella-like endosymbionts. J Clin Microbiol 46(9):3139–3143. doi:10.1128/JCM.00275-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Euler M, Wang Y, Otto P, Tomaso H, Escudero R, Anda P, Hufert FT, Weidmann M (2012) Recombinase polymerase amplification assay for rapid detection of Francisella tularensis. J Clin Microbiol 50(7):2234–2238. doi:10.1128/JCM.06504-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Euler M, Wang Y, Heidenreich D, Patel P, Strohmeier O, Hakenberg S, Niedrig M, Hufert FT, Weidmann M (2013) Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents. J Clin Microbiol 51(4):1110–1117. doi:10.1128/JCM.02704-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fonseca AP, Correia P, Extremina CI, Sousa JC, Tenreiro R, Barros H (2008) Molecular epidemiology of Pseudomonas aeruginosa clinical isolates from Portuguese Central Hospital. Folia Microbiol 53(6):540–546. doi:10.1007/s12223-008-0086-y

    Article  CAS  Google Scholar 

  • Forsman M, Nyrén A, Sjöstedt A, Sjökvist L, Sandström G (1995) Identification of Francisella tularensis in natural water samples by PCR. FEMS Microbiol Ecol 16(1):83–92. doi:10.1111/j.1574-6941.1995.tb00271.x

    Article  CAS  Google Scholar 

  • Forsman M, Henningson EW, Larsson E, Johansson T, Sandstrom G (2000) Francisella tularensis does not manifest virulence in viable but non-culturable state. FEMS Microbiol Ecol 31(3):217–224

    Article  CAS  PubMed  Google Scholar 

  • Francy DS, Bushon RN, Brady AM, Bertke EE, Kephart CM, Likirdopulos CA, Mailot BE, Schaefer FW 3rd, Lindquist HD (2009) Comparison of traditional and molecular analytical methods for detecting biological agents in raw and drinking water following ultrafiltration. J Appl Microbiol 107(5):1479–1491. doi:10.1111/j.1365-2672.2009.04329.x

    Article  CAS  PubMed  Google Scholar 

  • Fujita O, Tatsumi M, Tanabayashi K, Yamada A (2006) Development of a real-time PCR assay for detection and quantification of Francisella tularensis. Jpn J Infect Dis 59(1):46–51

    CAS  PubMed  Google Scholar 

  • Garcia Del Blanco N, Dobson ME, Vela AI, De La Puente VA, Gutierrez CB, Hadfield TL, Kuhnert P, Frey J, Dominguez L, Rodriguez Ferri EF (2002) Genotyping of Francisella tularensis strains by pulsed-field gel electrophoresis, amplified fragment length polymorphism fingerprinting, and 16S rRNA gene sequencing. J Clin Microbiol 40(8):2964–2972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilbert SE, Rose LJ (2012) Survival and persistence of nonspore-forming biothreat agents in water. Lett Appl Microbiol 55(3):189–194. doi:10.1111/j.1472-765X.2012.03277.x

    Article  CAS  PubMed  Google Scholar 

  • Gillings MR (2014) Rapid extraction of PCR-competent DNA from recalcitrant environmental samples. Methods Mol Biol 1096:17–23. doi:10.1007/978-1-62703-712-9_2

    Article  CAS  PubMed  Google Scholar 

  • Goethert HK, Telford SR 3rd (2009) Nonrandom distribution of vector ticks (Dermacentor variabilis) infected by Francisella tularensis. PLoS Pathog 5(2):e1000319. doi:10.1371/journal.ppat.1000319

    Article  PubMed Central  PubMed  Google Scholar 

  • Grunow R, Splettstoesser W, McDonald S, Otterbein C, O’Brien T, Morgan C, Aldrich J, Hofer E, Finke EJ, Meyer H (2000) Detection of Francisella tularensis in biological specimens using a capture enzyme-linked immunosorbent assay, an immunochromatographic handheld assay, and a PCR. Clin Diagn Lab Immunol 7(1):86–90

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grunow R, Miethe P, Conlan W, Finke EJ, Friedewald S, Porsch-Ozcurumez M (2008) Rapid detection of Francisella tularensis by the immunoaffinity assay ABICAP in environmental and human samples. J Rapid Methods Autom Microbiol 16:30–54

    Article  Google Scholar 

  • Grunow R, Kalaveshi A, Kuhn A, Mulliqi-Osmani G, Ramadani N (2012) Surveillance of tularaemia in Kosovo, 2001 to 2010. Euro Surveill 17(28):pii: 20217

    Google Scholar 

  • He J, Kraft AJ, Fan J, Van Dyke M, Wang L, Bose ME, Khanna M, Metallo JA, Henrickson KJ (2009) Simultaneous detection of CDC category “A” DNA and RNA bioterrorism agents by use of multiplex PCR & RT-PCR enzyme hybridization assays. Viruses 1(3):441–459. doi:10.3390/v1030441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huelseweh B, Ehricht R, Marschall HJ (2006) A simple and rapid protein array based method for the simultaneous detection of biowarfare agents. Proteomics 6(10):2972–2981. doi:10.1002/pmic.200500721

    Article  CAS  PubMed  Google Scholar 

  • Humrighouse BW, Adcock NJ, Rice EW (2011) Use of acid treatment and a selective medium to enhance the recovery of Francisella tularensis from water. Appl Environ Microbiol 77(18):6729–6732. doi:10.1128/AEM.05226-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Janse I, Hamidjaja RA, Bok JM, van Rotterdam BJ (2010) Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification. BMC Microbiol 10:314. doi:10.1186/1471-2180-10-314

    PubMed Central  CAS  PubMed  Google Scholar 

  • Janse I, Bok JM, Hamidjaja RA, Hodemaekers HM, van Rotterdam BJ (2012) Development and comparison of two assay formats for parallel detection of four biothreat pathogens by using suspension microarrays. PLoS One 7(2):e31958. doi:10.1371/journal.pone.0031958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeng K, Hardick J, Rothman R, Yang S, Won H, Peterson S, Hsieh YH, Masek BJ, Carroll KC, Gaydos CA (2013) Reverse transcription-PCR-electrospray ionization mass spectrometry for rapid detection of biothreat and common respiratory pathogens. J Clin Microbiol 51(10):3300–3307. doi:10.1128/JCM.01443-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johansson A, Berglund L, Eriksson U, Goransson I, Wollin R, Forsman M, Tarnvik A, Sjostedt A (2000a) Comparative analysis of PCR versus culture for diagnosis of ulceroglandular tularemia. J Clin Microbiol 38(1):22–26

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johansson A, Ibrahim A, Goransson I, Eriksson U, Gurycova D, Clarridge JE 3rd, Sjostedt A (2000b) Evaluation of PCR-based methods for discrimination of Francisella species and subspecies and development of a specific PCR that distinguishes the two major subspecies of Francisella tularensis. J Clin Microbiol 38(11):4180–4185

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kane SR, Letant SE, Murphy GA, Alfaro TM, Krauter PW, Mahnke R, Legler TC, Raber E (2009) Rapid, high-throughput, culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates. J Microbiol Methods 76(3):278–284. doi:10.1016/j.mimet.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  • Kantardjiev T, Velinov T (1995) Interaction between protozoa and microorganisms of the genus Francisella. Probl Infec Dis 22:34–35

    Google Scholar 

  • Keim P, Johansson A, Wagner DM (2007) Molecular epidemiology, evolution, and ecology of Francisella. Ann N Y Acad Sci 1105:30–66. doi:10.1196/annals.1409.011

    Article  CAS  PubMed  Google Scholar 

  • Kingry LC, Petersen JM (2014) Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol 4:35. doi:10.3389/fcimb.2014.00035

    PubMed Central  PubMed  Google Scholar 

  • Klerks MM, van Bruggen AH, Zijlstra C, Donnikov M (2006) Comparison of methods of extracting Salmonella enterica serovar Enteritidis DNA from environmental substrates and quantification of organisms by using a general internal procedural control. Appl Environ Microbiol 72(6):3879–3886. doi:10.1128/AEM.02266-05

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuske CR, Barns SM, Grow CC, Merrill L, Dunbar J (2006) Environmental survey for four pathogenic bacteria and closely related species using phylogenetic and functional genes. J Forensic Sci 51(3):548–558. doi:10.1111/j.1556-4029.2006.00131.x

    Article  CAS  PubMed  Google Scholar 

  • Lamont EA, Wang P, Enomoto S, Borewicz K, Abdallah A, Isaacson RE, Sreevatsan S (2014) A combined enrichment and aptamer pull down assay for Francisella tularensis detection in food and environmental matrices. PLoS One 9(12):e114622. doi:10.1371/journal.pone.0114622

    Article  PubMed Central  PubMed  Google Scholar 

  • Letant SE, Murphy GA, Alfaro TM, Avila JR, Kane SR, Raber E, Bunt TM, Shah SR (2011) Rapid-viability PCR method for detection of live, virulent Bacillus anthracis in environmental samples. Appl Environ Microbiol 77(18):6570–6578. doi:10.1128/AEM.00623-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahajan UV, Gravgaard J, Turnbull M, Jacobs DB, McNealy TL (2011) Larval exposure to Francisella tularensis LVS affects fitness of the mosquito Culex quinquefasciatus. FEMS Microbiol Ecol 78(3):520–530. doi:10.1111/j.1574-6941.2011.01182.x

    Article  CAS  PubMed  Google Scholar 

  • Matero P, Hemmila H, Tomaso H, Piiparinen H, Rantakokko-Jalava K, Nuotio L, Nikkari S (2011) Rapid field detection assays for Bacillus anthracis, Brucella spp., Francisella tularensis and Yersinia pestis. Clin Microbiol Infect 17(1):34–43. doi:10.1111/j.1469-0691.2010.03178.x

    Article  CAS  PubMed  Google Scholar 

  • McAvin JC, Morton MM, Roudabush RM, Atchley DH, Hickman JR (2004) Identification of Francisella tularensis using real-time fluorescence polymerase chain reaction. Mil Med 169(4):330–333

    Article  PubMed  Google Scholar 

  • Meric M, Sayan M, Dundar D, Willke A (2010) Tularaemia outbreaks in Sakarya, Turkey: case–control and environmental studies. Singap Med J 51(8):655–659

    CAS  Google Scholar 

  • Mitscherlich E, Marth EH (1984) Microbial survival in the environment. Springer, Berlin

    Book  Google Scholar 

  • Nakazawa Y, Williams RA, Peterson AT, Mead PS, Kugeler KJ, Petersen JM (2010) Ecological niche modeling of Francisella tularensis subspecies and clades in the United States. Am J Trop Med Hyg 82(5):912–918. doi:10.4269/ajtmh.2010.09-0354

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Brien T, Johnson LH III, Aldrich JL, Allen SG, Liang L-T, Plummer AL, Krak SJ, Boiarski AA (2000) The development of immunoassays to four biological threat agents in a bidiffractive grating biosensor. Biosens Bioelectron 14(10–11):815–828. doi:10.1016/S0956-5663(99)00061-5

    Article  PubMed  Google Scholar 

  • O’Connell KP, Anderson PE, Valdes JJ, Bucher JR (2004) Testing of the Bio-SEEQ® (Smiths detection handheld PCR instrument): sensitivity, specificity, and effect of interferents on Francisella tularensis assay performance. Edgewood Chemical Biological Center, US Army Research, Development and Engineering Command, Aberdeen Proving Ground, MD

  • Oyston PC, Sjostedt A, Titball RW (2004) Tularaemia: bioterrorism defence renews interest in Francisella tularensis. Nat Rev Microbiol 2(12):967–978. doi:10.1038/nrmicro1045

    Article  CAS  PubMed  Google Scholar 

  • Peruski AH, Johnson LH 3rd, Peruski LF Jr (2002) Rapid and sensitive detection of biological warfare agents using time-resolved fluorescence assays. J Immunol Methods 263(1–2):35–41

    Article  CAS  PubMed  Google Scholar 

  • Petersen JM, Schriefer ME, Gage KL, Montenieri JA, Carter LG, Stanley M, Chu MC (2004) Methods for enhanced culture recovery of Francisella tularensis. Appl Environ Microbiol 70(6):3733–3735. doi:10.1128/AEM.70.6.3733-3735.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petersen JM, Carlson J, Yockey B, Pillai S, Kuske C, Garbalena G, Pottumarthy S, Chalcraft L (2009) Direct isolation of Francisella spp. from environmental samples. Lett Appl Microbiol 48(6):663–667. doi:10.1111/j.1472-765X.2009.02589.x

    CAS  PubMed  Google Scholar 

  • Pohanka M, Skládal P (2007) Piezoelectric immunosensor for the direct and rapid detection of Francisella tularensis. Folia Microbiol 52(4):325–330. doi:10.1007/bf02932086

    Article  CAS  Google Scholar 

  • Pohanka M, Skladal P (2009) Bacillus anthracis, Francisella tularensis and Yersinia pestis. The most important bacterial warfare agents—review. Folia Microbiol (Praha) 54(4):263–272. doi:10.1007/s12223-009-0046-1

    Article  CAS  Google Scholar 

  • Quinn R, Campbell AM, Phillips AP (1984) A monoclonal antibody specific for the a antigen of Brucella spp. J Gen Microbiol 130(9):2285–2289

    CAS  PubMed  Google Scholar 

  • Rachwal PA, Rose HL, Cox V, Lukaszewski RA, Murch AL, Weller SA (2012) The potential of TaqMan array cards for detection of multiple biological agents by real-time PCR. PLoS One 7(4):e35971. doi:10.1371/journal.pone.0035971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robe P, Nalin R, Capellano C, Vogel TM, Simonet P (2003) Extraction of DNA from soil. Eur J Soil Biol 39:183–190

    Article  CAS  Google Scholar 

  • Schweighardt AJ, Battaglia A, Wallace MM (2014) Detection of anthrax and other pathogens using a unique liquid array technology. J Forensic Sci 59(1):15–33. doi:10.1111/1556-4029.12283

    Article  CAS  PubMed  Google Scholar 

  • Seiner DR, Colburn HA, Baird C, Bartholomew RA, Straub T, Victry K, Hutchison JR, Valentine N, Bruckner-Lea CJ (2013) Evaluation of the FilmArray® system for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. J Appl Microbiol 114(4):992–1000. doi:10.1111/jam.12107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sellek R, Jimenez O, Aizpurua C, Fernandez-Frutos B, De Leon P, Camacho M, Fernandez-Moreira D, Ybarra C, Carlos Cabria J (2008) Recovery of Francisella tularensis from soil samples by filtration and detection by real-time PCR and cELISA. J Environ Monit 10(3):362–369. doi:10.1039/b716608g

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Hotta A, Yamamoto Y, Fujita O, Uda A, Morikawa S, Yamada A, Tanabayashi K (2013) Detection of Francisella tularensis-specific antibodies in patients with tularemia by a novel competitive enzyme-linked immunosorbent assay. Clin Vaccine Immunol 20(1):9–16. doi:10.1128/CVI.00516-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simsek H, Taner M, Karadenizli A, Ertek M, Vahaboglu H (2012) Identification of Francisella tularensis by both culture and real-time TaqMan PCR methods from environmental water specimens in outbreak areas where tularemia cases were not previously reported. Eur J Clin Microbiol Infect Dis 31(9):2353–2357. doi:10.1007/s10096-012-1576-z

    Article  CAS  PubMed  Google Scholar 

  • Sjostedt A (2006) Intracellular survival mechanisms of Francisella tularensis, a stealth pathogen. Microbes Infect 8(2):561–567. doi:10.1016/j.micinf.2005.08.001

    Article  PubMed  Google Scholar 

  • Svensson K, Granberg M, Karlsson L, Neubauerova V, Forsman M, Johansson A (2009) A real-time PCR array for hierarchical identification of Francisella isolates. PLoS One 4(12):e8360. doi:10.1371/journal.pone.0008360

    Article  PubMed Central  PubMed  Google Scholar 

  • Trombley Hall A, McKay Zovanyi A, Christensen DR, Koehler JW, Devins Minogue T (2013) Evaluation of inhibitor-resistant real-time PCR methods for diagnostics in clinical and environmental samples. PLoS One 8(9):e73845. doi:10.1371/journal.pone.0073845

    Article  PubMed Central  PubMed  Google Scholar 

  • Turingan RS, Thomann HU, Zolotova A, Tan E, Selden RF (2013) Rapid focused sequencing: a multiplexed assay for simultaneous detection and strain typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis. PLoS One 8(2):e56093. doi:10.1371/journal.pone.0056093

  • van Hoek ML (2013) Biofilms: an advancement in our understanding of Francisella species. Virulence 4:833–846

    Article  PubMed Central  PubMed  Google Scholar 

  • Versage JL, Severin DD, Chu MC, Petersen JM (2003) Development of a multitarget real-time TaqMan PCR assay for enhanced detection of Francisella tularensis in complex specimens. J Clin Microbiol 41(12):5492–5499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Visvesvara GS (2010) Free-living amebae as opportunistic agents of human disease. J Neuroparasitol 1(13): N100802

    Google Scholar 

  • Walker RE, Petersen JM, Stephens KW, Dauphin LA (2010) Optimal swab processing recovery method for detection of bioterrorism-related Francisella tularensis by real-time PCR. J Microbiol Methods 83(1):42–47. doi:10.1016/j.mimet.2010.07.015

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse CA, Hottel HE (2007) Comparison of five commercial DNA extraction kits for the recovery of Francisella tularensis DNA from spiked soil samples. Mol Cell Probes 21(2):92–96. doi:10.1016/j.mcp.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse CA, Kesterson KE, Duncan DD, Eshoo MW, Wolcott M (2012) Identification and characterization of Francisella species from natural warm springs in Utah, USA. Lett Appl Microbiol 54(4):313–324. doi:10.1111/j.1472-765X.2012.03214.x

    Article  CAS  PubMed  Google Scholar 

  • WHO (2007) WHO guidelines on tularemia. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • Yang Y, Wang J, Wen H, Liu H (2012) Comparison of two suspension arrays for simultaneous detection of five biothreat bacterial in powder samples. J Biomed Biotechnol 2012:831052. doi:10.1155/2012/831052

    PubMed Central  PubMed  Google Scholar 

  • Zasada AA, Forminska K, Zacharczuk K, Jacob D, Grunow R (2015) Comparison of eleven commercially available rapid tests for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. Lett Appl Microbiol 60(5):409–413. doi:10.1111/lam.12392

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62(2):316–322

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Disclaimer

The US Environmental Protection Agency, through its Office of Research and Development, funded and managed the literature review described herein under an Interagency Agreement with the Defense Technical Information Center through the Battelle/Chemical, Biological, Radiological, and Nuclear Defense Information and Analysis Center Contract No. SP0700-00-D-3180 Delivery Order 0729/Technical Area Task CB-11-0232. This document has been subjected to the Agency’s review and has been approved for publication. This report was generated using references (secondary data) that could not be evaluated for accuracy, precision, representativeness, completeness, or comparability and therefore no assurance can be made that the data extracted from these publications meet EPA’s stringent quality assurance requirement. The contents of this document reflect the views of the contributors and do not necessarily reflect the views of the Agency. Mention of trade names or commercial products in this document or in the literature referenced in this document does not constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin E. Silvestri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvestri, E.E., Perkins, S.D., Rice, E.W. et al. Review of processing and analytical methods for Francisella tularensis in soil and water. Ann Microbiol 66, 77–89 (2016). https://doi.org/10.1007/s13213-015-1144-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1144-8

Keywords

Navigation