Skip to main content
Log in

Piezoelectric immunosensor for the direct and rapid detection ofFrancisella tularensis

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A novel immunosensing device based on a piezoelectric sensor for direct detection of the biological warfare agentFrancisella tularensis was developed. This sensor includes mouse polyclonal antibody immobilized in a layer of protein A covalently linked to the gold electrode of the sensor. The immunosensor is able to detectF. tularensis with the limit of detection 105 CFU/mL with a typical measuring cycle >5 min. The sensor was successfully evaluated for rapid detection ofF. tularensis spikes in drinking water and milk; no deterioration of sensitivity in comparison with buffer solutions was observed. The proposed concept of a rapid measurement of microbial agents seems to be promising for evaluation of samples after short pre-cultivation enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BTA:

biothreat alert

BWA:

biological warfare agent

ELISA:

enzyme-linked immunosorbent assay

LD50 :

lethal dose

LOD:

limit of detection

LPS:

lipopolysaccharide

PBS:

phosphate-buffered saline

PCR:

polymerase chain reaction

PZ:

piezoelectric

QCM:

quartz crystal microbalance

RAPID:

ruggedized advanced pathogen identification device

References

  • Carter R.M., Mekalanos J.J., Jacobs M.B., Lubrano G.J., Guilbault G.G.: Quartz crystal microbalance detection ofVibrio cholerae O139 serotype.J.Immunol.Meth. 187, 121–125 (1995).

    Article  CAS  Google Scholar 

  • Christensen D.R., Hartman L.J., Loveless B.M., Frye M.S., Shipley M.A., Bridge D.L., Richards M.J., Kaplan R.S., Garrison J., Baldwin C.D., Kulesh D.A., Norwood D.A.: Detection of biological threat agents by real-time PCR: comparison of assay performance on the R.A.P.I.D., the light cycler, and the smart cycler platforms.Clin.Chem. 52, 141–145 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Cirino N.M., Musser K.A., Egan C.: Multiplex diagnostic platforms for detection of biothreat agents.Expert Rev.Mol.Diagn. 4, 841–857 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Dennis D.T., Iglesby T.V., Henderson D.A., Bartlett J.G., Ascher M.S., Eitzen E., Fine A.D., Friedlander A.M., Hauer J., Layton M., Lillibridge S.R., McDade J.E., Osterholm M.T., O’Toole T., Parker G., Perl T.M., Russell P.K., Tonat K.: Tularemia as a biological weapon — medical and public health management.J.Am.Med.Assoc. 285, 2763–2773 (2001).

    Article  CAS  Google Scholar 

  • Emanuel P.A., Bell R., Dang J.L., McClanahan R., David J.C., Burgess R.J., Thompson J., Collins L., Hadfield T.: Detection ofFrancisella tularensis within infected mouse tissues by using a hand-held PCR thermocycler.J. Clin.Microbiol. 41, 689–693 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Fujita O., Tatsumi M., Tanabayashi K., Yamada A.: Development of a real-time PCR assay for detection and quantification ofFrancisella tularensis.Japan.J.Infect.Dis. 59, 46–51 (2006).

    CAS  Google Scholar 

  • Grunow R., Splettstoesser W., McDonald S., Otterbein C., O’Brien T., Morgan C., Aldrich J., Hofer E., Finke E.J., Meyer H.: Detection ofFrancisella tularensis in biological specimens using a capture enzyme-linked immunosorbent assay, an immunochromatographic hand-held assay, and a PCR.Clin.Diagn.Lab.Immunol. 7, 86–90 (2000).

    PubMed  CAS  Google Scholar 

  • Jacobs M.B., Carter R.M., Lubrano G.J., Guilbault G.G.: A piezoelectric biosensor forListeria monocytogenes.Am.Lab. 27, 26–28 (1995).

    Google Scholar 

  • Johansson A., Forsman M., Sjostedt A.: The development of tools for diagnosis of tularemia and typing ofFrancisella tularensis.APMIS 112, 898–907 (2004).

    Article  PubMed  CAS  Google Scholar 

  • McAvin J.C., Morton M.M., Roudabush R.M., Atchley D.H., Hickman J.R.: Identification ofFrancisella tularensis using realtime fluorescence polymerase chain reaction.Mil.Med. 169, 330–333 (2004).

    PubMed  Google Scholar 

  • O’Brien T., Johnson L.H., Aldrich J.L., Allen S.G., Liang L.T., Plummer A.L., Krak S.J., Boiarski A.A.: The development of immunoassays to four biological threat agents in a bidiffractive grating biosensor.Biosens.Bioelectron. 14, 815–828 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Plomer M., Guilbault G.G., Hock B.: Development of a piezoelectric immunosenzor for the detection ofEnterobacteria.Enzyme Microb.Technol. 14, 230–235 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Pohanka M., Skládal P.: Piezoelectric immunosensor forFrancisella tularensis detection using immunoglobulin M in a limiting dilution.Anal.Lett. 38, 411–422 (2005).

    CAS  Google Scholar 

  • Ramachandran A., Flinchbaugh J., Ayoubi P., Olah G.A., Malayer J.R.: Target discrimination by surface-immobilized molecular beacons designed to detectFrancisella tularensis.Biosens.Bioelectron. 19, 727–736 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Shapiro D.S., Schwartz D.R.: Exposure of laboratory workers toFrancisella tularensis despite a bioterrorism procedure.J.Clin.Microbiol. 40, 2278–2281 (2002).

    Article  PubMed  Google Scholar 

  • Skládal P.: Piezoelectric quartz crystal sensors applied for bioanalytical assays and characterization of affinity interactions.J.Brazil Chem.Soc. 14, 491–502 (2003).

    Google Scholar 

  • Song L.N., Ahn A., Walt D.R.: Fiber-optic microsphere-based array for multiplexed biological warfare agent detection.Anal.Chem. 78, 1023–1033 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Splettstoesser W.D., Tomaso H., Al Dahouk S., Neubauer H., Schuff-Werner P.: Diagnosis procedures in tularemia with special focus on molecular and immunological techniques.J.Vet.Med.Ser.B 52, 249–261 (2005).

    Article  CAS  Google Scholar 

  • Vivekananda J., Kiel J.L.: Anti-Francisella tularensis DNA aptamers detect tularemia antigen from different subspecies by aptamer-linked immobilized sorbent assay.Lab.Invest. 86, 610–618 (2006).

    PubMed  CAS  Google Scholar 

  • Weintraub A.: Immunology of bacterial polysaccharide antigens.Carbohydr.Res. 338, 2539–2547 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Wong Y.Y., Ng S.P., Ng M.H., Si S.H., Yao S.Z., Fung Y.S.: Immunosensor for the differentiation and detection ofSalmonella species based on a quartz crystal microbalance.Biosens.Bioelectron. 17, 676–684 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Skládal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohanka, M., Skládal, P. Piezoelectric immunosensor for the direct and rapid detection ofFrancisella tularensis . Folia Microbiol 52, 325–330 (2007). https://doi.org/10.1007/BF02932086

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932086

Keywords

Navigation