Skip to main content
Log in

Strain-dependent tolerance to acetic acid in Dekkera bruxellensis

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Dekkera bruxellensis—a yeast species associated with wine and beer production—has recently received attention because of its ability to compete with Saccharomyces cerevisiae in distilleries producing fuel ethanol, and due to its resistance to high ethanol and acid levels. The tolerance to acetic acid in 29 strains of D. bruxellensis was investigated by screening growth at different concentrations up to 120 mM at pH 4.5. Different metabolic responses were exhibited in three strains (CBS 98, CBS 2499 and CBS 4482) that were analysed by their FTIR-metabolomic fingerprint. Physiological studies showed that the presence of acetic acid significantly affected their growth, causing a different reduction in growth rate, glucose consumption and ethanol production rates, as well as biomass and ethanol yields. The examined strains were unable to metabolise acetic acid in the presence of glucose, probably due to a glucose repression mechanism on the acetyl-CoA syntethase activity. Interestingly, the cells continued to produce acetic acid as byproduct of their fermentative metabolism. We also showed that the HOG MAP kinase pathway was not activated by phosphorylation upon exposure of the cells to acetic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adt I, Toubas D, Pinon JM, Manfait M, Sockalingum GD (2006) FTIR spectroscopy as a potential tool to analyse structural modifications during morphogenesis of Candida albicans. Arch Microbiol 185:277–285

    Article  CAS  PubMed  Google Scholar 

  • Borneman AR, Zeppel R, Chambers P, Curtin CD (2014) Insight into the Dekkera bruxellensis genomic landscape: comparative genomics reveals variations in ploidy and nutrient utilization potential amongst wine isolates. PLoS Genet 10:1–10

    Article  Google Scholar 

  • Carmelo V, Santos H, Sa-Correia I (1997) Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta 1325:63–70

    Article  CAS  PubMed  Google Scholar 

  • Cavagna M, Dell’Anna R, Monti F, Rossi F, Torriani S (2010) Use of ATR-FTIR microspectroscopy to monitor autolysis of Saccharomyces cerevisiae cells in a base wine. J Agric Food Chem 58:39–45

    Article  CAS  PubMed  Google Scholar 

  • Commission Regulation (EU) (2011) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Official Journal of the European Union L 295:1–177

  • Corte L, Rellini P, Roscini L, Fatichenti F, Cardinali G (2010) Development of a novel, FTIR (Fourier transform infrared spectroscopy) based, yeast bioassay for toxicity testing and stress response study. Anal Chim Acta 659:258–265

    Article  CAS  PubMed  Google Scholar 

  • Corte L, Antonielli L, Roscini L, Fatichenti F, Cardinali G (2011) Influence of cell parameters in fourier transform infrared spectroscopy analysis of whole yeast cells. Analyst 136:2339–2349

    Article  CAS  PubMed  Google Scholar 

  • Curtin C, Kennedy E, Henschke PA (2012) Genotype dependent sulfite tolerance of Australian Dekkera (Brettanomyces) bruxellensis wine isolate. Lett Appl Microbiol 55:56–61

    Article  CAS  PubMed  Google Scholar 

  • de Pita de Barros W, Leite FCB, de Souza Liberal AT, Simões DA, de Morais MA (2011) The ability to use nitrate confers advantage to Dekkera bruxellensis over S. cerevisiae and can explain its adaptation to industrial fermentation processes. Antonie Van Leeuwenhoek 100:99–107

    Article  Google Scholar 

  • de Souza Liberal AT, Basílio ACM, do Monte Resende A, Brasileiro BTV, da Silva-Filho EA, de Morais JOF, Simões DA, de Morais MA (2007) Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J Appl Microbiol 102:538–547

    Article  PubMed  Google Scholar 

  • Essendoubi M, Toubas D, Bouzaggou M, Pinon J-M, Manfait M, Sockalingum GD (2005) Rapid identification of Candida species by FT-IR microspectroscopy. Biochim Biophys Acta 1724:239–247

    Article  CAS  PubMed  Google Scholar 

  • Fernandes L, Corte-Real M, Loureiro V, Loureiro-Dias MC, Leao C (1997) Glucose respiration and fermentation in Zygosaccharomyces bailii and Saccharomyces cerevisiae express different sensitivity patterns to ethanol and acetic acid. Lett Appl Microbiol 25:249–253

    Article  CAS  PubMed  Google Scholar 

  • Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sa-Correia I (2005) Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 337:95–103

    Article  CAS  PubMed  Google Scholar 

  • Fleet G (1992) Spoilage yeasts. Crit Rev Biotechnol 12:1–44

    Article  CAS  PubMed  Google Scholar 

  • Galafassi S, Merico A, Pizza F, Hellborg L, Molinari F, Piškur J, Compagno C (2011) Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low-pH conditions. J Ind Microbiol Biotechnol 38:1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Galafassi S, Capusoni C, Moktaduzzaman M, Compagno C (2013a) Utilization of nitrate abolishes the “Custers effect” in Dekkera bruxellensis and determines a different pattern of fermentation products. J Ind Microbiol Biotechnol 40:297–303

    Article  CAS  PubMed  Google Scholar 

  • Galafassi S, Toscano M, Vigentini I, Piškur J, Compagno C (2013b) Osmotic stress response in the wine yeast Dekkera bruxellensis. Food Microbiol 36:316–319

    Article  CAS  PubMed  Google Scholar 

  • Galafassi S, Toscano M, Vigentini I, Zambelli P, Simonetti P, Foschino R, Compagno C (2015) Cold exposure affects carbohydrates and lipid metabolism, and induces Hog1p phosphorylation in Dekkera bruxellensis strain CBS 2499. Antonie Van Leeuwenhoek 107(5):1145–1153. doi: 10.1007/s10482-015-0406-6

  • Gamero A, Ferreira V, Pretorius IS, Querol A (2014) Wine, beer and cider: unravelling the aroma profile. In: Piškur J, Compagno C (eds) Molecular mechanisms in yeast carbon metabolism. Springer, Berlin, pp 261–297

    Chapter  Google Scholar 

  • Gatti E, Popolo L, Vai M, Rota N, Alberghina L (1994) O-Linked oligosaccharides in yeast glycosyl phosphatidylinositol-anchored protein Gpi115 are clustered in a serine-rich region not essential for its function. J Biol Chem 269:19695–19700

    CAS  PubMed  Google Scholar 

  • Geros H, Azevedo M-M, Cassio F (2000) Biochemical studies on the production of acetic acid by the yeast Dekkera anomala. Food Technol Biotechnol 38:59–62

    CAS  Google Scholar 

  • Giannattasio S, Guaragnella N, Corte-Real M, Passarella S, Marra E (2005) Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene 354:93–98

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro JF, Mira NP, Sá-Correia I (2012) Adaptive response to acetic acid in the highly resistant yeast species Zygosaccharomyces bailii revealed by quantitative proteomics. Proteomics 12:2303–2318

    Article  CAS  PubMed  Google Scholar 

  • Harz M, Rösch P, Popp J (2009) Vibrational spectroscopy—a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry 75A:104–113

    Article  CAS  Google Scholar 

  • Hernandez-Lopez MJ, Randez-Gil F, Prieto JA (2006) Hog1 mitogen-activated protein kinase plays conserved and distinct roles in the osmotolerant yeast Torulaspora delbrueckii. Euk Cell 5:1410–1419

    Article  CAS  Google Scholar 

  • Hohmann S (2009) Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 583:4025–4029

    Article  CAS  PubMed  Google Scholar 

  • Holyoak CD, Stratford M, McMullin Z, Cole MB, Crimmins K, Brown AJ, Coote PJ (1996) Activity of the plasma membrane H(+)-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol 62:3158–3164

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang WE, Hopper D, Goodacre R, Beckmann M, Singer A, Draper J (2006) Rapid characterization of microbial biodegradation pathways by FT-IR spectroscopy. J Microbiol Methods 67:273–280

    Article  CAS  PubMed  Google Scholar 

  • Lindberg L, Santos AX, Riezman H, Olsson L, Bettiga M (2013) Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress. PLoS One 8:e73936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malfeito-Ferreira M (2011) Yeasts and wine off-flavors: a technological perspective. Ann Microbiol 61:95–102

    Article  CAS  Google Scholar 

  • Mäntele WG, Wollenweber AM, Nabedryk E, Breton J (1988) Infrared spectroelectrochemistry of bacteriochlorophylls and bacteriopheophytins: implications for the binding of the pigments in the reaction center from photosynthetic bacteria. Proc Natl Acad Sci USA 85:8468–8472

    Article  PubMed Central  PubMed  Google Scholar 

  • Martani F, Fossati T, Posteri R, Signori L, Porro D, Branduardi P (2013) Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains. Yeast 30:365–378

    Article  CAS  PubMed  Google Scholar 

  • Mira NP, Becker J, Sá-Correia I (2010a) Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS 14:587–601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mira NP, Palma M, Guerreiro JF, Sá-Correia I (2010b) Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 9:e79

    Article  Google Scholar 

  • Mollapour M, Piper PW (2006) Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res 6:1274–1280

    Article  CAS  PubMed  Google Scholar 

  • Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27:6446–6456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morrissey WF, Davenport B, Querol A, Dobson ADW (2004) The role of indigenous yeasts in traditional Irish cider fermentations. J Appl Microbiol 97:647–655

    Article  CAS  PubMed  Google Scholar 

  • Pampulha ME, Loureiro-Dias MC (2000) Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol Lett 184:69–72

    Article  CAS  PubMed  Google Scholar 

  • Passoth V, Blomqvist J, Schnürer J (2007) Dekkera bruxellensis and Lactobacillus vini form a stable ethanol-producing consortium in a commercial alcohol production process. Appl Environ Microbiol 73:4354–4356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pearce AK, Crimmins K, Groussac E, Hewlins MJE, Dickinson JR, Francois J, Booth IR, Brown AJP (2001) Pyruvate kinase (Pyk1) levels influence both the rate and direction of carbon flux in yeast under fermentative conditions. Microbiology 147:391–401

    Article  CAS  PubMed  Google Scholar 

  • Pereira LF, Bassi APG, Avansini SH, Neto AGB, Brasileiro BTRV, Ceccato-Antonini SR, de Morais MA (2012) The physiological characteristic of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 101:529–539

    Article  CAS  PubMed  Google Scholar 

  • Piper PW (2011) Resistance of yeasts to weak organic acid food preservatives. Adv Appl Microbiol 77:97–113

    Article  CAS  PubMed  Google Scholar 

  • Piškur J, Ling Z, Marcet-Houben M et al (2012) The genome of wine yeast Dekkera bruxellensis provide a tool to explore its food-related properties. Int J Food Microbiol 157:202–209

    Article  PubMed  Google Scholar 

  • Postma E, Verduyn C, Scheffers WA, Van Dijken JP (1989) Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 55:468–477

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodrigues F, Sousa MJ, Ludovico P, Santos H, Côrte-Real M, Leão C (2012) The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii. PLoS One 7:e52402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roscini L, Corte L, Antonielli L, Rellini P, Fatichenti F, Cardinali G (2010) Influence of cell geometry and number of replicas in the reproducibility of whole cell FTIR analysis. Analyst 135:2099–2105

    Article  CAS  PubMed  Google Scholar 

  • Rozpędowska E, Hellborg L, Ishchuk OP, Orhan F, Galafassi S, Merico A, Woolfit M, Compagno C, Piškur J (2011) Parallel evolution of the make-accumulate-consume strategy in Saccharomyces and Dekkera yeasts. Nat Commun 2:302

    Article  PubMed Central  PubMed  Google Scholar 

  • Schifferdecker AJ, Dashko S, Ishchuk OP, Piškur J (2014) The wine and beer yeast Dekkera bruxellensis. Yeast 31:323–332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sousa MJ, Miranda L, Côrte-Real M, Leão C (1996) Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments. Appl Environ Microbiol 62:3152–3157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stratford M, Nebe-von-Caron G, Steels H, Novodvorska M, Ueckert J, Archer DB (2013a) Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae. Int J Food Microbiol 161:164–171

    Article  CAS  PubMed  Google Scholar 

  • Stratford M, Steels H, Nebe-von-Caron G, Novodvorska M, Hayer KJ, Archer DB (2013b) Extreme resistance to weak acid preservatives in the spoilage yeast Zygosaccharomyces bailii. Int J Food Microbiol 166:126–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swinnen S, Fernandez-Nino M, Gonzales-Ramos D, van Maris AJA, Nevoigt E (2014) The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae. FEMS Yeast Res 14:642–653

    Article  CAS  PubMed  Google Scholar 

  • Szeghalmi A, Kaminskyj S, Gough KM (2007) A synchrotron FTIR microspectroscopy investigation of fungal hyphae grown under optimal and stressed conditions. Anal Bioanal Chem 387:1779–1789

    Article  CAS  PubMed  Google Scholar 

  • Teoh AL, Heard G, Cox J (2004) Yeast ecology of Kombucha fermentation. Int J Food Microbiol 95:119–126

    Article  CAS  PubMed  Google Scholar 

  • van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Lett 32:199–224

    Article  Google Scholar 

  • Vigentini I, Romano A, Compagno C, Merico A, Molinari F, Tirelli A, Foschino R, Volonterio G (2008) Physiological and oenological traits of different Dekkera/Brettanomyces bruxellensis strains under wine-model conditions. FEMS Yeast Res 8:1087–1096

    Article  CAS  PubMed  Google Scholar 

  • Vigentini I, De Lorenzis G, Picozzi C, Imazio S, Merico A, Galafassi S, Piškur J, Foschino R (2012) Intraspecific variations of Dekkera/Brettanomyces bruxellensis genome studied by capillary electrophoresis separation of the intron splice site profiles. Int J Food Microbiol 157:6–15

    Article  CAS  PubMed  Google Scholar 

  • Vigentini I, Joseph LCM, Picozzi C, Foschino R, Bisson LF (2013) Assessment of the Brettanomyces bruxellensis metabolome during sulphur dioxide exposure. FEMS Yeast Res 13:597–608

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Chang A (2002) Sphingoid base synthesis is required for oligomerization and cell surface stability of the yeast plasma membrane ATPase, Pma1. Proc Natl Acad Sci USA 99:12853–12858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson WA, Hawley SA, Hardie DG (1996) Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol 6:1426–1434

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Kassama Y, Young M, Kell DB, Goodacre R (2004) Differentiation of Micromonospora isolates from a coastal sediment in Wales on the basis of Fourier transform infrared spectroscopy, 16S rRNA sequence analysis, and the amplified fragment length polymorphism technique. Appl Environ Microbiol 70:6619–6627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zuehlke JM, Petrova B, Edwards CG (2013) Advances in the control of wine spoilage by Zygosaccharomyces and Dekkera/Brettanomyces. Annu Rev Food Sci Technol 4:57–78

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Md Moktaduzzaman has a fellowship from Marie-Curie FP7-PEOPLE-2010-ITN “CORNUCOPIA” project to C.C. This work is dedicated to the memory of Jure Piškur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concetta Compagno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moktaduzzaman, M., Galafassi, S., Vigentini, I. et al. Strain-dependent tolerance to acetic acid in Dekkera bruxellensis . Ann Microbiol 66, 351–359 (2016). https://doi.org/10.1007/s13213-015-1115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1115-0

Keywords

Navigation