Skip to main content

Advertisement

Log in

FTIR spectroscopy as a potential tool to analyse structural modifications during morphogenesis of Candida albicans

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Candidaalbicans is a polymorphic organism that grows under certain conditions as blastospores, hyphae or pseudohyphae. The potentials of FTIR spectroscopy for assessing structural differences in C. albicans blastospores and hyphae were investigated. The main observed differences were localised in the polysaccharide (950–1,185 cm−1), protein (1,480–1,720 cm−1), and the fatty acids (2,840–3,000 cm−1) regions. Quantitative evaluation of differences between hyphae and blastospores by curve-fitting of these regions indicate that these modifications could be due to both changes in structure and content of components of the cell wall such as β-glucans, mannoproteins, and lipids. Furthermore, glycogen consumption could be involved during hyphae elongation. Thus, FTIR spectroscopy can be an interesting tool to investigate differences in structure and in content between blastospores and hyphae. We also demonstrate through this study that differentiation of C. albicans clinical strains using hyphae is feasible, as this has been previously shown with blastospores. This preliminary work on identification of C. albicans using hyphae is a prelude to a larger clinical study for early typing within 7 h from a pure culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bouchara JP, Tronchin G, Annaix V, Robert R, Senet JM (1990) Laminin receptors on Candida albicans germ tubes. Infect Immun 58:48–54

    PubMed  CAS  Google Scholar 

  • Brown AJ, Gow NA (1999) Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7:333–338

    Article  PubMed  CAS  Google Scholar 

  • Calderone RA, Braun PC (1991) Adherence and receptor relationships of Candida albicans. Microbiol Rev 55:1–20

    PubMed  CAS  Google Scholar 

  • Calderone RA, Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9:327–335

    Article  PubMed  CAS  Google Scholar 

  • Chauhan N, Li D, Singh P, Calderone RA, Kruppa M (2002) The cell wall of Candida spp. In: Calderone RA (ed) Candida and candidiasis. ASM, Washington pp 159–175

    Google Scholar 

  • Clark TA, Hajjeh RA (2002) Recent trends in the epidemiology of invasive mycoses. Curr Opin Infect Dis 15:569–574

    PubMed  Google Scholar 

  • Clemons KV, Feroze F, Holmberg K, Stevens DA (1997) Comparative analysis of genetic variability among Candida albicans isolates from different geographic locales by three genotypic methods. J Clin Microbiol 35:1332–1336

    PubMed  CAS  Google Scholar 

  • Fukazawa Y, Kagaya K (1997) Molecular bases of adhesion of Candida albicans. J Med Vet Mycol 35:87–99

    Article  PubMed  CAS  Google Scholar 

  • Gale CA et al (1998) Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279:1355–1358

    Article  PubMed  CAS  Google Scholar 

  • Galichet A, Sockalingum GD, Belarbi A, Manfait M (2001) FTIR spectroscopic analysis of Saccharomyces cerevisiae cell walls: study of an anomalous strain exhibiting a pink-colored cell phenotype. FEMS Microbiol Lett 197:179–186

    Article  PubMed  CAS  Google Scholar 

  • Gil ML, Casanova M, Martinez JP (1994) Changes in the cell wall glycoprotein composition of Candida albicans associated to the inhibition of germ tube formation by EDTA. Arch Microbiol 161:489–494

    Article  PubMed  CAS  Google Scholar 

  • Gough KM, Zelinski D, Wiens R, Rak M, Dixon IM (2003) Fourier transform infrared evaluation of microscopic scarring in the cardiomyopathic heart: effect of chronic AT1 suppression. Anal Biochem 316:232–242

    Article  PubMed  CAS  Google Scholar 

  • Hedderwick SA, Lyons MJ, Liu M, Vazquez JA, Kauffman CA (2000) Epidemiology of yeast colonization in the intensive care unit. Eur J Clin Microbiol Infect Dis 19:663–670

    Article  PubMed  CAS  Google Scholar 

  • Helm D, Labischinski H, Schallehn G, Naumann D (1991) Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J Gen Microbiol 137 (Pt 1):69–79

    PubMed  CAS  Google Scholar 

  • Jarvis WR (1995) Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin Infect Dis 20:1526–1530

    PubMed  CAS  Google Scholar 

  • LeGal JM, Manfait M, Theophanides T (1991) Applications of FTIR spectroscopy in structural studies of cells and bacteria. J Mol Struc 242:397–407

    Article  CAS  Google Scholar 

  • Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949

    Article  PubMed  CAS  Google Scholar 

  • Loeb JD, Sepulveda-Becerra M, Hazan I, Liu H (1999) A G1 cyclin is necessary for maintenance of filamentous growth in Candida albicans. Mol Cell Biol 19:4019–4027

    PubMed  CAS  Google Scholar 

  • Lowman DW, Ferguson DA, Williams DL (2003) Structural characterization of (1–>3)-beta-d-glucans isolated from blastospore and hyphal forms of Candida albicans. Carbohydr Res 338:1491–1496

    Article  PubMed  CAS  Google Scholar 

  • Maquelin K et al (2002) Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods 51:255–271

    Article  PubMed  CAS  Google Scholar 

  • Michell AJ, Scurfield G (1970) An assessment of infrared spectra as indicators of fungal cell wall composition. Aust J Biol Sci 23:345–360

    CAS  Google Scholar 

  • Miura NN, Adachi Y, Yadomae T, Tamura H, Tanaka S, Ohno N (2003) Structure and biological activities of beta-glucans from yeast and mycelial forms of Candida albicans. Microbiol Immunol 47:173–182

    PubMed  CAS  Google Scholar 

  • Molero G et al (1998) Candida albicans: genetics, dimorphism and pathogenicity. Int Microbiol 1:95–106

    PubMed  CAS  Google Scholar 

  • Poulain D, Slomianny C, Jouault T, Gomez JM, Trinel PA (2002) Contribution of phospholipomannan to the surface expression of beta-1,2-oligomannosides in Candida albicans and its presence in cell wall extracts. Infect Immun 70:4323–4328

    Article  PubMed  CAS  Google Scholar 

  • Romeo M, Burden F, Quinn M, Wood B, McNaughton D (1998) Infrared microspectroscopy and artificial neural networks in the diagnosis of cervical cancer. Cell Mol Biol 44: 179–187

    PubMed  CAS  Google Scholar 

  • San-Blas G et al (2000) Fungal morphogenesis and virulence. Med Mycol 38(Suppl 1):79–86

    PubMed  Google Scholar 

  • Sandt C et al (2003) Use of Fourier-transform infrared spectroscopy for typing of Candida albicans strains isolated in intensive care units. J Clin Microbiol 41:954–959

    Article  PubMed  CAS  Google Scholar 

  • Sockalingum GD et al (1997) ATR-FTIR spectroscopic investigation of imipenem-susceptible and -resistant Pseudomonas aeruginosa isogenic strains. Biochem Biophys Res Commun 232:240–246

    Article  PubMed  CAS  Google Scholar 

  • Staab JF, Ferrer CA, Sundstrom P (1996) Developmental expression of a tandemly repeated, proline-and glutamine-rich amino acid motif on hyphal surfaces on Candida albicans. J Biol Chem 271:6298–6305

    Article  PubMed  CAS  Google Scholar 

  • Sullivan PA, Yin CY, Molloy C, Templeton MD, Shepherd MG (1983) An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation. Can J Microbiol 29:1514–1525

    Article  PubMed  CAS  Google Scholar 

  • Sundstrom PM, Kenny GE (1985) Enzymatic release of germ tube-specific antigens from cell walls of Candida albicans. Infect Immun 49:609–614

    PubMed  CAS  Google Scholar 

  • Sundstrom P, Balish E, Allen CM (2002) Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice. J Infect Dis 185:521–530

    Article  PubMed  CAS  Google Scholar 

  • Torosantucci A, Gomez MJ, Bromuro C, Casalinuovo I, Cassone A (1991) Biochemical and antigenic characterization of mannoprotein constituents released from yeast and mycelial forms of Candida albicans. J Med Vet Mycol 29:361–372

    Article  PubMed  CAS  Google Scholar 

  • Trinel PA et al (1999) The Candida albicans phospholipomannan is a family of glycolipids presenting phosphoinositolmannosides with long linear chains of beta-1,2-linked mannose residues. J Biol Chem 274:30520–30526

    Article  PubMed  CAS  Google Scholar 

  • Verduyn Lunel FM, Meis JF, Voss A (1999) Nosocomial fungal infections: candidemia. Diagn Microbiol Infect Dis 34:213–220

    Article  PubMed  CAS  Google Scholar 

  • Wells GB, Dickson RC, Lester RL (1996) Isolation and composition of inositolphosphorylceramide-type sphingolipids of hyphal forms of Candida albicans. J Bacteriol 178:6223–6226

    PubMed  CAS  Google Scholar 

  • Yano K, Ohoshima S, Gotou Y, Kumaido K, Moriguchi T, Katayama H (2000) Direct measurement of human lung cancerous and noncancerous tissues by Fourier transform infrared microscopy: can an infrared microscope be used as a clinical tool? Anal Biochem 287: 218–225

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowlegdements

This work was supported by the Conseil Régional de Champagne-Ardenne, Pfizer Laboratories and partially by the French PHRC 1998–2001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh D. Sockalingum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adt, I., Toubas, D., Pinon, JM. et al. FTIR spectroscopy as a potential tool to analyse structural modifications during morphogenesis of Candida albicans . Arch Microbiol 185, 277–285 (2006). https://doi.org/10.1007/s00203-006-0094-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0094-8

Keywords

Navigation