Skip to main content
Log in

Plant-growth-promoting potential of endosymbiotic actinobacteria isolated from sand truffles (Terfezia leonis Tul.) of the Algerian Sahara

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Seven endosymbiotic actinobacteria were isolated from sand truffles (Terfezia leonis Tul.) harvested in the Hassi R’Mel region of the Algerian Sahara. Morphological characteristics and chemotaxonomical analysis indicated that all isolates were members of the Streptomyces genus. All the isolated actinobacteria were initially screened in vitro for antifungal capacities, chitinolytic activities, siderophore production, and synthesis of plant-growth regulators (indole-3-acetic acid and gibberellic acid). The isolate Streptomyces sp. TL7 exhibited a remarkable profile with positive results in all trials, while the others showed variable responses to assays. In vivo trials were then carried out with the isolates to evaluate their root colonization abilities and plant-growth-promoting potential on tomato (cv. Marmande) seedlings. The results showed that all these Streptomyces strains could be isolated successfully from inside the roots of inoculated tomato seedlings. However, the plant-growth-promoting effect varied depending on the treatment. Seeds surface-coated with spores of Streptomyces sp. strain TL7 showed the highest performance, with significantly increased (P < 0.05) shoot and root lengths, and seedling fresh and dry weights. The taxonomic position based on 16S rDNA sequence analysis and phylogenetic studies indicated that strain TL7 was related to Streptomyces neopeptinius KNF 2047T (99.0 % similarity). The interesting antifungal properties and plant-growth promotion traits shown by Streptomyces sp. strain TL7 may indicate a potential for its possible use as plant-growth-promoting agent, especially for tomato seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Gasparetti C, Turchetti B, Cramarossa MR, VaughanMartini A, Martini A, Pagnoni UM, Forti L (2005) Production of volatile organic compounds (VOCs) by yeasts isolated from the ascocarps of black (Tuber melanosporum Vitt.) and white (Tuber magnatum Pico) truffles. Arch Microbiol 184:187–193

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Qiu Z, You J, Tan H, Zhou S (2004) Isolation and characterization of endophytic Streptomyces from surface-sterilized tomato (Lycopersicun esculentum) roots. Lett Appl Microbiol 39:425–430

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Qiu Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic streptomycetes antagonistis of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol Lett 247:147–152

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Bae KS, Moon EY, Jung SO, Lee HK, Kim SJ (2000) Nocardiopsis kunsanensis sp. nov, a moderately halophilic actinomycete isolated from a saltern. Int J Syst Evol Microbiol 50:1909–1913

    Article  CAS  PubMed  Google Scholar 

  • Citterio B, Cardoni P, Potenza L, Amicucci A, Gola G, Nuti M (1995) Isolation of bacteria from sporocarps of Tuber magnatum Pico., Tuber borchii Vitt. and Tuber maculatum Vitt.: identification and biochemical characterization. In: Stocchi V, Bonfante P, Nuti M (eds) Biotechnology of Ectomycorrhizae: molecular approaches. Plenum, New York, pp 241–248

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crowley DE (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Berlin, pp 169–198

    Chapter  Google Scholar 

  • Edel-Hermann V, Gautheron N, Steinberg C (2012) Genetic diversity of Fusarium oxysporum and related species pathogenic on tomato in Algeria and other Mediterranean countries. Plant Pathol 61:787–800

    Article  CAS  Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy GESJ, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26

    Article  CAS  PubMed  Google Scholar 

  • Errakhi R, Bouteau F, Lebrihi A, Barakate M (2007) Evidence of biological control capacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World J Microbiol Biotechnol 23:1503–1509

    Article  CAS  Google Scholar 

  • Fialho de Oliveira M, Germano da Silva M, Van der Sand ST (2010) Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicum esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent. Res Microbiol 161:565–572

    Article  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Franco AC, Deobald LA, Spivak A, Crawford DL (2003) Actinobacterial chitinase-like enzymes: profiles of rhizosphere versus non-rhizosphere isolates. Can J Microbiol 49:683–698

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Simpson KE (1987) Ecology of streptomycetes. Front Appl Microbiol 2:97–125

    Google Scholar 

  • Goudjal Y, Toumatia O, Sabaou N, Barakate M, Mathieu F, Zitouni A (2013) Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World J Microbiol Biotechnol 29:1821–1829

    Article  CAS  PubMed  Google Scholar 

  • Goudjal Y, Toumatia O, Yekkour A, Sabaou N, Mathieu F, Zitouni A (2014) Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol Res 169:59–65

    Article  CAS  PubMed  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. Appl Soil Ecol 40:510–517

    Article  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    Article  CAS  Google Scholar 

  • Hasegawa S, Meguro A, Shimizu M, Nishimura T, Kunoh H (2006) Endophytic actinomycetes and their interactions with host plants. Actinomycetologica 20:72–81

    Article  CAS  Google Scholar 

  • Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509

    Article  CAS  Google Scholar 

  • Hoster F, Schmitz JE, Daniel R (2005) Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain. Appl Microbiol Biotechnol 66:434–442

    Article  CAS  PubMed  Google Scholar 

  • Ilic SB, Konstantinovic SS, Todorovic ZB, Lazic ML, Veljkovic VB, Jokovic N, Radovanovic BC (2007) Characterization and antimicrobial activity of the bioactive metabolites in streptomycete isolates. Microbiology 76:421–428

    Article  CAS  Google Scholar 

  • Khamna S, Yokota A, Peberdy JF, Lumyong S (2010) Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. EurAsia J BioSci 4:23–32

    Article  Google Scholar 

  • Lahdenperä ML, Simon E, Uoti J (1991) Mycostop - a novel biofungicide based on Streptomyces bacteria. In: Beemster ABR, Bollen GJ, Gerlagh M, Ruissen MA, Schippers B, Tempel A (eds) Biotic interactions and soil-borne disease. Elsevier, Amsterdam, pp 258–263

    Chapter  Google Scholar 

  • Liu D, Coloe S, Baird R, Pedersen J (2000) Rapid mini-preparation of fungal DNA for PCR. J Clin Microbiol 38:471

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Meguro A, Ohmura Y, Hasegawa S, Shimizu M, Nishimura T, Kunoh H (2006) An endophytic actinomycete, Streptomyces sp. MBR-52, that accelerates emergence and elongation of plant adventitious roots. Actinomycetologica 20:1–9

    Article  CAS  Google Scholar 

  • Merzaeva OV, Shirokikh IG (2010) The production of auxins by the endophytic bacteria of winter rye. Appl Biochem Microbiol 46:44–50

    Article  CAS  Google Scholar 

  • Muzammil S, Graillon C, Saria R, Mathieu F, Lebrihi A, Compant S (2013) The Saharan isolate Saccharothrix algeriensis NRRL B-24137 induced systemic resistance in Arabidopsis thaliana seedlings against Botrytis cinerea. Plant Soil 374:423–434

    Article  Google Scholar 

  • Pacioni G, Leonardi M, Aimola P, Ragnelli AM, Rubini A, Paolocci F (2007) Isolation and characterization of some mycelia inhabiting Tuber ascomata. Mycol Res 3:1450–1460

  • Rosenblueth ME, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Ruanpanun P, Tangchitsomkid N, Hyde KD, Lumyong S (2010) Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 26:1569–1578

    Article  CAS  Google Scholar 

  • Sabaou N, Boudjella H, Bennadji A, Mostefaoui A, Zitouni A, Lamari L, Bennadji H, Lefebvre G, Germain P (1998) Les sols des oasis du Sahara algérien, source d’actinomycètes rares producteurs d’antibiotiques. Sécheresse 9:147–153

    Google Scholar 

  • Sadeghi A, Karimi J, Abaszadeh D, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Lou K, Li C (2009) Promotion of plant growth by phytohormone-producing endophytic microbes of sugar beet. Biol Fertil Soils 45:645–653

    Article  CAS  Google Scholar 

  • Shimizu M (2011) Endophytic actinomycetes: biocontrol agents and growth promoters. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 201–220

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Slama A, Gorai M, Fortas Z, Boudabous A, Neffati M (2012) Growth, root colonization and nutrient status of Helianthemum sessiliflorum Desf. inoculated with a desert truffle Terfezia boudieri Chatin. Saudi J Biol Sci 19:25–29

    Article  PubMed Central  PubMed  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Thakur D, Yadav A, Gogoi BK, Bora TC (2007) Isolation and screening of Streptomyces in soil of protected forest areas from the state of Assam and Tripura, India, for antimicrobial metabolites. J Mycol Med 17:242–249

    Article  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae, the causal agent of raspberry root-rot. Appl Environ Microbiol 62:1630–1635

    PubMed Central  CAS  PubMed  Google Scholar 

  • Verma VC, Gond SK, Kumar A, Mishra A, Kharwar RN, Gange AC (2009) Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity. Microb Ecol 57:749–756

    Article  PubMed  Google Scholar 

  • Wang K, Yan P, Ding Q, Wu Q, Wang Z, Peng J (2013) Diversity of culturable root-associated/endophytic bacteria and their chitinolytic and aflatoxin inhibition activity of peanut plant in China. World J Microbiol Biotechnol 29:1–10

    Article  PubMed  Google Scholar 

  • Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Wilson D (1995) Endophyte—the evolution of a term and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Yekkour A, Sabaou N, Zitouni A, Errakhi R, Mathieu F, Lebrihi A (2012) Characterization and antagonistic properties of Streptomyces strains isolated from Saharan soils, and evaluation of their ability to control seedling blight of barley caused by Fusarium culmorum. Lett Appl Microbiol 55:427–435

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mohammed Kouidri of the botanical laboratory, Agronomy Department, Laghouat University (Algeria), for his kind sampling of sand truffles (Terfezia leonis Tul.) from the Algerian Sahara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelghani Zitouni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goudjal, Y., Zamoum, M., Meklat, A. et al. Plant-growth-promoting potential of endosymbiotic actinobacteria isolated from sand truffles (Terfezia leonis Tul.) of the Algerian Sahara. Ann Microbiol 66, 91–100 (2016). https://doi.org/10.1007/s13213-015-1085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1085-2

Keywords

Navigation