Skip to main content
Log in

Communities of ammonia-oxidizing bacteria, ammonia-oxidizing archaea and nitrite-oxidizing bacteria in shrimp ponds

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The communities of nitrifying microorganisms were identified in samples taken from six shrimp ponds in Thailand (five outdoor-earthen ponds and one indoor pond). The sequences of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), and nitrite-oxidizing bacteria (NOB) were analyzed after specific PCR amplification of the 16S rRNA or amoA genes. Among the ammonia-oxidizing microorganisms, AOB appeared to be the most dispersed throughout the ponds, while AOA sequences were only retrieved from three ponds. The AOB found in the shrimp ponds belonged to only two AOB clusters, the Nitrosomonas sp. Nm143 cluster and Nitrosomonas marina cluster, which are reported with salt requirements. The majority of AOA sequences fell closer to group I.1a Thaumarcheota rather than group I.1b Thaumarcheota. For NOB, Nitrospira, but not Nitrobacter, were detected. NOB of sublineage II and IV Nitrospira, which were previously reported as salt tolerant and salt requirement NOB, were found to be common in the shrimp ponds. Insight into ammonia-oxidizing microorganisms, numbers of AOB and AOA amoA genes in two selected ponds (one outdoor-earthen ponds and one indoor pond) were quantified using qPCR. High numbers of AOA amoA genes were found in both ponds. The information obtained from this study clearly identifies the microorganisms responsible for nitrification in shrimp ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alleman EJ (1984) Elevated nitrite occurrence in biological wastewater treatment systems. Water Sci Technol 17:409–419

    Google Scholar 

  • Bartosch S, Wolgast I, Spieck E, Bock E (1999) Identification of nitrite-oxidizing bacteria with monoclonal antibodies recognizing the nitrite oxidoreductase. Appl Environ Microbiol 65:4126–4133

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bartosch S, Harttwig C, Spieck E, Bock E (2002) Immunological detection of Nitrospiralike bacteria in various soils. Microb Ecol 43: 26–33

    Google Scholar 

  • Beccari M, Marani D, Ramadori R (1979) A critical analysis of nitrification alternatives. Water Res 13:185–192

    Article  CAS  Google Scholar 

  • Bernhard AE, Donn T, Giblin AE, Stahl DA (2005) Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environ Microbiol 7:1289–1297

    Article  CAS  PubMed  Google Scholar 

  • Blackburne R, Vadivelu VM, Yuan Z, Keller J (2007) Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Res 41:3033–3042

    Article  CAS  PubMed  Google Scholar 

  • Brown MN, Briones A, Diana J, Raskin L (2013) Ammonia-oxidizing archaea and nitrite-oxidizing nitrospiras in the biofilter of a shrimp recirculating aquaculture system. FEMS Microbiol Ecol 83(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Caffrey JM, Bano N, Kalanetra K, Hollibaugh JT (2007) Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. ISME J 1:660–662

    Article  PubMed  Google Scholar 

  • Cébron A, Garnier J (2005) Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria: Detection, quantification and growth along the lower Seine River (France). Water Res 39:4979–4992

    Article  PubMed  Google Scholar 

  • Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M (2001) In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67:5273–5284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De La Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10:810–818

    Article  PubMed  Google Scholar 

  • Egli K, Langer C, Siegrist H-R, Zehnder AJB, Wagner M, Van der Meer JR (2003) Community analysis of ammonia and nitrite oxidizers during start-up of nitritation reactors. Appl Environ Microbiol 69:3213–3222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ehrich S, Behrens D, Lebedeva E, Ludwig W, Bock E (1995) A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogentic relationship. Arch Microbiol 164:16–23

    Article  CAS  PubMed  Google Scholar 

  • Foesel BU, Gieseke A, Schwermer C, Stief P, Koch L, Cytryn E, De La Torre J, Van Rijn J, Minz D, Drake HL, Schramm A (2008) Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina-like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm. FEMS Microbiol Ecol 63:192–204

    Article  CAS  PubMed  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freitag TE, Chang L, Prosser JI (2006) Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater–marine gradient. Environ Microbiol 8:684–696

    Article  CAS  PubMed  Google Scholar 

  • Funge-Smith SJ, Briggs MRP (1998) Nutrient budgets in intensive shrimp pond: implications for sustainability. Aquaculture 164:117–133

    Article  Google Scholar 

  • Grommen R, Dauw L, Verstraete W (2005) Elevated salinity selects for a less diverse ammonia-oxidizing population in aquarium biofilters. FEMS Microbiol Ecol 52:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves JA (1998) Nitrogen biogeochemistry of aquaculture ponds. Aquaculture 166:181–212

    Article  CAS  Google Scholar 

  • Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci U S A 105:2134–2139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haseborg ET, Zamora TM, Fröhlich J, Frimmel FH (2010) Nitrifying microorganism in fixed-bed biofilm reactors fed with different nitrite and ammonia concentrations. Bioresour Technol 101:1701–1706

    Article  PubMed  Google Scholar 

  • Itoi S, Ebihara N, Washio S, Sugita H (2007) Nitrite-oxidizing bacteria, Nitrospira, distribution in the outer layer of the biofilm from filter materials of a recirculating water system for the goldfish Carassius auratus. Aquaculture 264:267–308

    Article  Google Scholar 

  • Jie H, Daping L (2008) Nitrite removal performance and community structure of nitrite-oxidizing and heterotrophic bacteria suffered with organic matter. Curr Microbiol 57:287–293

    Article  CAS  PubMed  Google Scholar 

  • Kayee P, Sonthiphand P, Rongsayamanont C, Limpiyakorn T (2011) Archaeal amoA genes outnumber bacterial amoA genes in municipal wastewater treatment plants in Bangkok. Microb Ecol 62:776–788

    Article  PubMed  Google Scholar 

  • Kim DJ, Kim SH (2006) Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics. Water Res 40:887–894

    Article  CAS  PubMed  Google Scholar 

  • Könneke M, Bernhard AE, De La Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  Google Scholar 

  • Koops HP, Pommerening-Röser A (2001) Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol 37:1–9

    Article  CAS  Google Scholar 

  • Koops HP, Purkhold U, Pommerening-Röser A, Timmermann G, Wagner M (2003) The Lithoautotrophic ammonia-oxidizing bacteria. In: Dworkin M (ed) The Prokaryotes: An Evoluting Electronic Resource for the Microbiological Community, 3rd edn. Springer-Verlag, New York

    Google Scholar 

  • Kowalchuck GA, Stephen JR, De Boer W, Prosser JI, Embley TM, Woldendorp JM (1997) Analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol 63:1489–1497

    Google Scholar 

  • Kutako M, Limpiyakorn T, Luepromchai E, Powtongsook S, Menasveta P (2009) Inorganic nitrogen conversion and changes of bacterial community in sediment from shrimp pond after methanol addition. J Appl Sci 9:2907–2915

    Article  CAS  Google Scholar 

  • Lebedeva EV, Alawi M, Maixner F, Jozsa PG, Daims H, Spieck E (2008) Physiological and phylogenetic characterization of a novel lithoautotrophic nitrite-oxidizing bacterium, ‘Candidatus Nitrospira bockiana’. Int J Syst Evol Microbiol 58:242–250

    Article  CAS  PubMed  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  PubMed  Google Scholar 

  • Limpiyakorn T, Shinohara Y, Kurisu F, Yagi O (2004) Distribution of ammonia-oxidizing bacteria in sewage activated sludge: analysis based on 16S rDNA sequence. Water Sci Technol 50:9–14

    CAS  PubMed  Google Scholar 

  • Limpiyakorn T, Shinohara Y, Kurisu F, Yagi O (2005) Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiol Ecol 54:205–217

    Article  CAS  PubMed  Google Scholar 

  • Limpiyakorn T, Kurisu F, Sakamoto Y, Yagi O (2007) Effect of ammonia and nitrite concentrations on communities and populations of ammonia-oxidizing bacteria in laboratory-scale continuous-flow reactors. FEMS Microbiol Ecol 60:501–512

    Article  CAS  PubMed  Google Scholar 

  • Limpiyakorn T, Sonthiphand P, Rongsayamanont C, Polprasert C (2011) Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresour Technol 102:3694–3701

    Article  CAS  PubMed  Google Scholar 

  • Limpiyakorn T, Fürhacker M, Haberl R, Chodanon T, Srithep P, Sonthiphand P (2013) amoA-encoding archaea in wastewater treatment plants: a review. Appl Environ Microbiol 97:1425–1439

    CAS  Google Scholar 

  • Liu S, Yang F, Gong Z, Su Z (2008) Assessment of the positive effect of salinity on the nitrogen removal performance and microbial composition during the start-up of CANON process. Appl Microbiol Biotechnol 80:339–348

    Article  CAS  PubMed  Google Scholar 

  • Maixner F, Noguera DR, Anneser B, Stoecker K, Wegl G, Wagner M, Daims H (2006) Nitrite concentration influences the population structure of Nitrospira-like bacteria. Environ Microbiol 8:1487–1495

    Article  CAS  PubMed  Google Scholar 

  • Malone RF, Pfeiffer TJ (2006) Rating fixed film nitrifying biofilters used in recirculating aquaculture systems. Aquacult Eng 34:389–402

    Article  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, De la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461:976–981

    Article  CAS  PubMed  Google Scholar 

  • Martiny AC, Albrechtsen HJ, Arvin E, Molin S (2005) Identification of bacteria in biofilm and bulk water samples from a nonchlrinated model drinking water distribution system: Detection of a large Nitrite-Oxidizing Population associated with Nitrospira spp. Appl Environ Microbiol 71:8611–8617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura Y, Satoh H, Kindaichi T, Okabe S (2006) Community structure, abundance, and in situ activity of nitrifying bacteria in river sediments as determined by the combined use of molecular techniques and microelectrodes. Environ Sci Technol 40:1532–1539

    Article  CAS  PubMed  Google Scholar 

  • Nicol GW, Schleper C (2006) Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14:207–212

    Article  CAS  PubMed  Google Scholar 

  • Nogueira R, Melo LF (2006) Competition between Nitrospira spp. and Nitrobacter spp. in nitrite-oxidizing bioreactors. Biotechnol. Biogeosciences 95:169–175

    CAS  Google Scholar 

  • Park HD, Wells GF, Bae H, Criddle CS, Francis CA (2006) Occurrence of ammonia oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72:5643–5647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Purkhold U, Wagner M, Timmermann G, Pommerening-Röser A, Koops HP (2003) 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int J Syst Evol Microbiol 53:1485–1494

    Article  CAS  PubMed  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63(12):4704–4712

    PubMed Central  CAS  PubMed  Google Scholar 

  • Satoh H, Nakamura Y, Okabe S (2006) Influences of infaunal burrows on the community structure and activity of ammonia-oxidizing bacteria in intertidal sediments. Appl Environ Microbiol 73:1341–1348

    Article  PubMed Central  PubMed  Google Scholar 

  • Schramm A, De Beer DK, Wagner M, Amann R (1998) Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl Environ Microbiol 64:3480–3485

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schramm A, De Beer D, Van Den Heuvel CJ, Ottengraf S, Amann R (1999) Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Appl Environ Microbiol 65:3690–3696

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sonthiphand P, Limpiyakorn T (2011) Change in ammonia-oxidizing microorganisms in enriched nitrifying activated sludge. Appl Environ Microbiol 89:843–853

    CAS  Google Scholar 

  • Spieck E, Bock E. (2005) The lithoautotrophic nitrite-oxidizing bacteria. In: Staley JT, et al. (ed) Bergey’s Manual of Systematic Bacteriology, 2nd Ed. Vol. 2. Springer Science + Business Media, pp.149–153

  • Sugita H, Nakamura H, Shimada T (2005) Microbial communities associated with filter materials in recirculating aquaculture systems of freshwater fish. Aquaculture 243:403–409

    Article  Google Scholar 

  • Tal Y, Watts JEM, Schreier SB, Sowers KR, Schreier HJ (2003) Characterization of the microbial community and nitrogen transformation processes associated with moving bed bioreactors in a closed recirculated mariculture system. Aquaculture 215:187–202

    Article  CAS  Google Scholar 

  • Teske A, Alm E, Regan JM, Toze S, Rittmann BE, Stahl DA (1994) Evolutionary relationship among ammonia- and nitrite-oxidizing bacteria. J Bacteriol 176:6623–6630

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tourna M, Stieglmeier M, Spang A, Könneke M, Schintlmeister A, Urich T, Engel M, Schloter M, Wagner M, Richter A, Schleper C (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci U S A 108:8420–8425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes or nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    Article  CAS  PubMed  Google Scholar 

  • Urakawa H, Maki H, Kawabata S, Fujiwara T, Ando H, Kawai T, Hiwatari T, Kohata K, Watanabe M (2006) Abundance and population structure of ammonia-oxidizing bacteria that inhabit canal sediments receiving effluents from municipal wastewater treatment plants. Appl Environ Microbiol 72:6845–6850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  PubMed  Google Scholar 

  • Whang LM, Chien IC, Yuan SL, Wu YJ (2009) Nitrifying community structures and nitrification performance of full-scale municipal and swine wastewater treatment plants. Chemosphere 75:234–242

    Article  CAS  PubMed  Google Scholar 

  • Wuchter C, Abbas B, Coolen MJL, Herfort L, Van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damsté JS (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci U S A 103:12317–12322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Center for Genetic Engineering and Biotechnology, the National Science and Technology Development Agency and the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund). A part of the work was conducted under the Integrated Innovation Academic Center Chulalongkorn University Centenary Academic Development Project (CU56-FW14) and the Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University (RES560530068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tawan Limpiyakorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srithep, P., Khinthong, B., Chodanon, T. et al. Communities of ammonia-oxidizing bacteria, ammonia-oxidizing archaea and nitrite-oxidizing bacteria in shrimp ponds. Ann Microbiol 65, 267–278 (2015). https://doi.org/10.1007/s13213-014-0858-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0858-3

Keywords

Navigation