Skip to main content
Log in

Identification of a fungus able to secrete enzymes that degrade regenerated cellulose films and analyses of its extracellular hydrolases

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The LW03 strain was isolated from Chinese farmland soil and found to be able to secrete certain enzymes degrading regenerated cellulose films at low temperature. The LW03 strain was systematically identified as Rhizopus arrhizus var. arrhizus by morphological, physiological, and molecular methods. Incubation of regenerated cellulose films with the extracted crude enzyme of LW03 was done to measure morphological changes by using scanning electron microscopy. Microscopic observations showed that the morphology of the regenerated cellulose films changed drastically due to enzymatic hydrolysis. The extracellular hydrolases of LW03 strain incubated on bran medium were also assessed. The predominant activity in the crude enzyme was glucoamylase activity, followed by acid proteinase, phytase and pectinase activity. Interestingly, activities of β-glucosidase, endoglucanase, exoglucanase, and cellulase were also observed, but at a much lower extent. Based on initial evidence, the crude enzyme is most likely to contain some new constituents capable of degrading regenerated cellulose films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahola S, Turon X, Osterberg M, Laine J, Rojas OJ (2008) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24:11592–11599

    Article  CAS  PubMed  Google Scholar 

  • Beauchemin KA, Colombatto D, Morgavi DP, Yang WZ (2003) Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J Anim Sci 81:37–47

    Google Scholar 

  • Cereia M, Terenzi HF, Jorge JA, Greene LJ, Rosa JC, Polizeli MDLTM (2000) Glucoamylase activity from the thermophilic fungus Scytalidium thermophilum. Biochemical and regulatory properties. J Basic Microbiol 40(2):83–92

    Article  CAS  Google Scholar 

  • Chen Y, Zhang LN, Gu JM, Liu J (2004) Physical properties of microporous membranes prepared by hydrolyzing cellulose/soy protein blends. J Membrane Sci 241(2):393–402

    Article  CAS  Google Scholar 

  • Cheng G, Liu Z, Murton JK, Jablin M, Dubey M, Majewski J, Halbert C, Browning J, Ankner J, Akgun B, Wang C, Esker AR, Sale KL, Simmons BA, Kent MS (2011) Neutron reflectometry and QCM-D study of the interaction of cellulases with films of amorphous cellulose. Biomacromolecules 12:2216–2224

    Article  CAS  PubMed  Google Scholar 

  • Eriksson J, Malmsten M, Tiberg F, Callisen TH, Damhus T, Johansen KS (2005) Enzymatic degradation of model cellulose films. J Colloid Interf Sci 284:99–106

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  Google Scholar 

  • Fernandez-Lahore HM, Auday RM, Fraile ER, Biscoglio de Jimenez Bonino M, Pirpignani L, Machalinski C, Cascone O (1999) Purification and characterization of an acid proteinase from mesophilic Mucor sp. solid-state cultures. J Peptide Res 53(6):599–605

    Article  CAS  Google Scholar 

  • Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Y, Belaich JP (2002) Degradation of cellulose substrates by cellulosome chimeras: Substrate targeting versus proximity of enzyme components. J Biol Chem 277(51):49621–49630

    Article  CAS  PubMed  Google Scholar 

  • Gonthier P, Garbelotto M (2011) Amplified fragment length polymorphism and sequence analyses reveal massive gene introgression from the European fungal pathogen Heterobasidion annosum into its introduced congener H. irregulare. Mol Ecol 20:2756–2770

    Article  CAS  PubMed  Google Scholar 

  • Gunjikar TP, Sawant SB, Joshi JB (2001) Shear deactivation of cellulase, exoglucanase, endoglucanase, and beta-glucosidase in a mechanically agitated reactor. Biotechnol Prog 17(6):1166–1168

    Article  CAS  PubMed  Google Scholar 

  • Gunnars S, Wagberg L, Stuart MAC (2002) Model films of cellulose: I. Method development and initial results. Cellulose 9:239–249

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  CAS  PubMed  Google Scholar 

  • Jeoh T, Wilson DB, Walker LP (2006) Effect of cellulase mole fraction and cellulose recalcitrance on synergism in cellulose hydrolysis and binding. Biotechnol Prog 22:270–277

    Article  CAS  PubMed  Google Scholar 

  • Josefsson P, Henriksson G, Wågberg L (2008) The physical action of cellulases revealed by a quartz crystal microbalance study using ultrathin cellulose films and pure cellulases. Biomacromolecules 9(1):249–254

    Article  CAS  PubMed  Google Scholar 

  • Kargl R, Mohan T, Köstler S, Spirk S, Doliška A, Stana-Kleinschek K, Ribitsch V (2013) Functional patterning of biopolymer thin films using enzymes and lithographic methods. Adv Funct Mater 23:308–315

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J Mol Evol 16(2):111–120

    Article  CAS  PubMed  Google Scholar 

  • Kleeberg I, Welzel K, VandenHeuvel J, Muller RJ, Deckwer WD (2005) Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters. Biomacromolecules 6(1):262–270

    Article  CAS  PubMed  Google Scholar 

  • Kosugi A, Murashima K, Doi RH (2001) Characterization of xylanolytic enzymes in Clostridium cellulovorans: Expression of xylanase activity dependent on growth substrates. J Bacteriol 183(24):7037–7043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li R, Zhang LN, Xu M (2012) Novel regenerated cellulose films prepared by coagulating with water: Structure and properties. Carbohyd Polym 87(1):95–100

    Article  CAS  Google Scholar 

  • Limam F, Chaabouni SE, Ghrir R, Marzouki N (1995) Two cellobiohydrolases of Penicillium occitanis mutant Pol 6: Purification and properties. Enzyme Microb Tech 17:340–346

    Article  CAS  Google Scholar 

  • Liu XY, Huang H, Zheng RY (2007) Molecular phylogenetic relationships within Rhizopus based on combined analyses of ITS rDNA and pyrG gene sequences. Sydowia 59:235–253

    Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Blol R 66(3):506–577

    Article  CAS  Google Scholar 

  • Medie FM, Davies GJ, Drancourt M, Henrissat B (2012) Genome analyses highlight the different biological roles of cellulases. Nat Rev Microbiol 10(3):227–234

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  • Mohan T, Kargl R, Doliska A, Ehmann HMA, Ribitsch V, Stana-Kleinschek K (2013) Enzymatic digestion of partially and fully regenerated cellulose model films from trimethylsilyl cellulose. Carbohyd Polym 93:191–198

    Article  CAS  Google Scholar 

  • Molina M, Cenamor R, Nombela C (1987) Exo-1, 3-beta-glucanase activity in Candida albicans: effect of the yeast-to-mycelium transition. J Gen Microbiol 133(3):609–617

    CAS  PubMed  Google Scholar 

  • Nascimento CV, Souza FHM, Masui DC, Leone FA, Peralta RM, Jorge JA, Furriel RPM (2010) Purification and biochemical properties of a glucose-stimulated β-D-glucosidase produced by Humicola grisea var. thermoidea grown on sugarcane bagasse. J Microbiol 48(1):53–62

    Article  CAS  PubMed  Google Scholar 

  • Ou KQ, Cheng YQ, Xing Y, Lin L, Nout R, Liang JF (2011) Phytase activity in brown rice during steeping and sprouting. J Food Sci Technol 48(5):598–603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramachandran S, Patel AK, Nampoothiri KM, Francis F, Nagy V, Szakacs G, Pandey A (2004) Coconut oil cake - a potential raw material for the production of α-amylase. Bioresour Technol 93(2):169–174

    Article  CAS  PubMed  Google Scholar 

  • Ricard M, Reid ID (2004) Purified pectinase lowers cationic demand in peroxide-bleached mechanical pulp. Enzyme Microb Technol 34:499–504

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

  • Shieh TR, Ware JH (1968) Survey of microorganisms for the production of extracellular phytase. Appl Microbiol 16(9):1348–1351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sukharnikov LO, Alahuhta M, Brunecky R, Upadhyay A, Himmel ME, Lunin VV, Zhulin IB (2012) Sequence, structure, and evolution of cellulases in glycoside hydrolase family 48. J Biol Chem 287(49):41068–41077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turon X, Rojas OJ, Deinhammer RS (2008) Enzymatic kinetics of cellulose hydrolysis: a QCM-D study. Langmuir 24:3880–3887

    Article  CAS  PubMed  Google Scholar 

  • Wei JC (1979) Manual of fungi identification. Shanghai Scientific and Technical Publishers, Shanghai (in Chinese)

    Google Scholar 

  • Wilson BD (2009) Cellulases and biofuels. Curr Opin Biotech 20:295–299

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Xiong XP, Zhang LN (2002) Microporous formation of blend membranes from cellulose/konjac glucomannan in NaOH/thiourea aqueous solution. J Membrane Sci 201:161–173

    Article  CAS  Google Scholar 

  • Zhang YHP, Lynd LR (2006) A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol Bioeng 94(5):888–898

    Article  CAS  PubMed  Google Scholar 

  • Zhen Y, Mi TZ, Yu ZG (2008) Detection of Phaeocystis globosa using sandwich hybridization integrated with nuclease protection assay (NPA-SH). J Environ Sci 20(12):1481–1486

    Article  CAS  Google Scholar 

  • Zheng RY, Chen GQ, Huang H, Liu XY (2007) A monograph of Rhizopus. Sydowia 59:273–372

    Google Scholar 

  • Zyani M, Mortabit D, Mostakim M, Iraqui M, Haggoud A, Ettayebi M, Koraichi SI (2009) Cellulolytic potential of fungi in wood degradation from an old house at the Medina of Fez. Ann Microbiol 59(4):699–704

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. David Peris Navarro and Guo-Rui Huang, University of Wisconsin-Madison, for their revising of our paper. This work was supported by the China Agriculture Research System (CARS-46-23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanbai Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Wang, Q. & Xiong, S. Identification of a fungus able to secrete enzymes that degrade regenerated cellulose films and analyses of its extracellular hydrolases. Ann Microbiol 64, 1041–1048 (2014). https://doi.org/10.1007/s13213-013-0741-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-013-0741-7

Keywords

Navigation