Skip to main content
Log in

A rapid, high-throughput method for quantitative determination of ethanol tolerance in Saccharomyces cerevisiae

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

There are a variety of methods available for determining ethanol tolerance phenotypes in Saccharomyces cerevisiae. Many of these methods are limited in through-put and/or application. We describe here a microtiter-plate, growth-based, liquid-culture, rapid ethanol tolerance assay (RETA) that overcomes these limitations. Determinations of ethanol tolerance gave results that were comparable to shake-flask cultures, and there was a high level of intra- and inter-plate reproducibility. We report the successful application of this assay to determining the segregation pattern of ethanol tolerance in backcrosses of two ethanol-tolerant mutants (SM and CM) to a non-tolerant parent (W303-1A); RETA was used to determine ethanol tolerance in numerous progeny resulting from these crosses. This assay, or variations thereof, will prove be of great value for anyone attempting to develop quantitative, high-throughput growth assays for yeast or other microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568

    Article  PubMed  CAS  Google Scholar 

  • Argueso JL, Wanat J, Gemici Z, Alani E (2004) Competing crossover pathways act during meiosis in Saccharomyces cerevisiae. Genetics 168(4):1805–1816

    Article  PubMed  CAS  Google Scholar 

  • Baranyi J, Roberts TA (1994) A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23(3–4):277–294

    Article  PubMed  CAS  Google Scholar 

  • Baranyi J, Roberts TA (1995) Mathematics of predictive food microbiology. Int J Food Microbiol 26(2):199–218

    Article  PubMed  CAS  Google Scholar 

  • Bellon JR, Eglinton JM, Siebert TE, Pollnitz AP, Rose L, MdB L, Chambers PJ (2011) Newly generated interspecific wine yeast hybrids introduce flavour and aroma diversity to wines. Appl Microbiol Biotechnol 91(3):603–612

    Article  PubMed  CAS  Google Scholar 

  • Çakar ZP, Seker UOS, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5(6–7):569–578

    Article  PubMed  Google Scholar 

  • Duetz WA (2007) Microtiter plates as mini-bioreactors: miniaturization of fermentation methods. Trends Microbiol 15(10):469–475

    Article  PubMed  CAS  Google Scholar 

  • Gellert G, Stommel A (1999) Influence of microplate material on the sensitivity of growth inhibition tests with bacteria assessing toxic organic substances in water and waste water. Environ Toxicol 14(4):424–428

    Article  CAS  Google Scholar 

  • Gietz RD, Schiestl RH (2007) Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):1–4

    Article  PubMed  CAS  Google Scholar 

  • Hu XH, Wang MH, Tan T, Li JR, Yang H, Leach L, Zhang RM, Luo ZW (2007) Genetic dissection of ethanol tolerance in budding yeast S. cerevisiae. Genetics 175(3):1479–1487

    Article  PubMed  CAS  Google Scholar 

  • Kaino T, Takagi H (2008) Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl Microbiol Biotechnol 79(2):273–283

    Article  PubMed  CAS  Google Scholar 

  • Liccioli T, Tran TMT, Cozzolino D, Jiranek V, Chambers PJ, Schmidt SA (2011) Microvinification-how small can we go? Appl Microbiol Biotechnol 89(5):1621–1628

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MC, Cutler NS, Heitman J (2000) Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol Biol Cell 11(1):183–199

    PubMed  CAS  Google Scholar 

  • Matsumoto T, Ishikawa S, Fukuda H, Kondo A (2004) Construction of ethanol-tolerant yeast strains with combinatorial library-selected peptides. J Mol Catal B: Enzym 28(4–6):253–257

    Article  CAS  Google Scholar 

  • Mitchell JJ, Paiva M, Heaton MB (1998) Optimal 96-well plate set-up to avoid ethanol volatility when assessing ethanol cytotoxicity. Alcohol 15(2):137–139

    Article  PubMed  CAS  Google Scholar 

  • Novotny C, Karst F (1994) Sterol dependent growth and ethanol tolerance of a sterol auxotrophic ERG9-HIS3 mutant of Saccharomyces cerevisiae. Biotechnol Lett 16(5):539–542

    Article  CAS  Google Scholar 

  • Ogawa Y, Nitta A, Uchiyama H, Imamura T, Shimoi H, Ito K (2000) Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J Biosci Bioeng 90(3):313–320

    PubMed  CAS  Google Scholar 

  • Santos J, Sousa MJ, Carcloso H, Inacio J, Silva S, Spencer-Martins I, Leao C (2008) Ethanol tolerance of sugar transport, and the rectification of stuck wine fermentations. Microbiology 154:422–430

    Article  PubMed  CAS  Google Scholar 

  • Schmitt S, Paro R (2004) Gene regulation - A reason for reading nonsense. Nature 429(6991):510–511

    Article  PubMed  CAS  Google Scholar 

  • Silberblatt S, Felder RA, Mifflin TE (2001) Optimizing reaction conditions of the NanoOrange® protein quantitation method for use with microplate-based automation. J Assoc Lab Automat 6(6):83–88

    Article  CAS  Google Scholar 

  • Snowdon C, Schierholtz R, Poliszczuk P, Hughes S, van der Merwe G (2009) ETP1/YHL010c is a novel gene needed for the adaptation of Saccharomyces cerevisiae to ethanol. FEMS Yeast Res 9(3):372–380

    Article  PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel-electrophoresis. J Mol Biol 98(3):503–508

    Article  PubMed  CAS  Google Scholar 

  • Stanley D, Chambers PJ, Stanley GA, Borneman A, Fraser S (2010a) Transcriptional changes associated with ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88(1):231–239

    Article  PubMed  CAS  Google Scholar 

  • Stanley D, Fraser S, Chambers PJ, Rogers P, Stanley GA (2010b) Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 37(2):139–149

    Article  PubMed  CAS  Google Scholar 

  • Toussaint M, Conconi A (2006) High-throughput and sensitive assay to measure yeast cell growth: a bench protocol for testing genotoxic agents. Nat Protoc 1(4):1922–1928

    Article  PubMed  CAS  Google Scholar 

  • Toussaint M, Levasseur G, Gervais-Bird J, Wellinger RJ, Abou Elela S, Conconi A (2006) A high-throughput method to measure the sensitivity of yeast cells to genotoxic agents in liquid cultures. Mutat Res Genet Toxicol Environ Mutag 606(1–2):92–105

    Article  CAS  Google Scholar 

  • Warringer J, Blomberg A (2003) Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae. Yeast 20(1):53–67

    Article  PubMed  CAS  Google Scholar 

  • Warringer J, Ericson E, Fernandez L, Nerman O, Blomberg A (2003) High-resolution yeast phenomics resolves different physiological features in the saline response. Proc Natl Acad Sci USA 100(26):15724–15729

    Article  PubMed  CAS  Google Scholar 

  • Weiss A, Delproposto J, Giroux CN (2004) High-throughput phenotypic profiling of gene-environment interactions by quantitative growth curve analysis in Saccharomyces cerevisiae. Anal Biochem 327(1):23–34

    Article  PubMed  CAS  Google Scholar 

  • Winston F, Dollard C, Ricuperohovasse SL (1995) Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11(1):53–55

    Article  PubMed  CAS  Google Scholar 

  • Yazawa H, Iwahashi H, Uemura H (2007) Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae. Yeast 24(7):551–560

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann HF, John GT, Trauthwein H, Dingerdissen U, Huthmacher K (2003) Rapid evaluation of oxygen and water permeation through microplate sealing tapes. Biotechnol Prog 19(3):1061–1063

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by Australia’s grape growers and winemakers through their investment body, the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government. The Australian Wine Research Institute is a member of the Wine Innovation Cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon A. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, T.M.T., Stanley, G.A., Chambers, P.J. et al. A rapid, high-throughput method for quantitative determination of ethanol tolerance in Saccharomyces cerevisiae . Ann Microbiol 63, 677–682 (2013). https://doi.org/10.1007/s13213-012-0518-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0518-4

Keywords

Navigation