Skip to main content

A Growth-Based Screening System for Hexose Transporters in Yeast

  • Protocol
  • First Online:
Glucose Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1713))

Abstract

As the simplest eukaryotic model system, the unicellular yeast Saccharomyces cerevisiae is ideally suited for quick and simple functional studies as well as for high-throughput screening. We generated a strain deficient for all endogenous hexose transporters, which has been successfully used to clone, characterize, and engineer carbohydrate transporters from different source organisms. Here we present basic protocols for handling this strain and characterizing sugar transporters heterologously expressed in it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21(1):85–111. https://doi.org/10.1111/j.1574-6976.1997.tb00346.x

    Article  CAS  PubMed  Google Scholar 

  2. Wieczorke R, Krampe S, Weierstall T et al (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464(3):123–128. https://doi.org/10.1016/S0014-5793(99)01698-1

    Article  CAS  PubMed  Google Scholar 

  3. Wieczorke R, Dlugai S, Krampe S et al (2003) Characterisation of mammalian GLUT glucose transporters in a heterologous yeast expression system. Cell Physiol Biochem 13(3):123–134. https://doi.org/10.1159/000071863

    Article  CAS  PubMed  Google Scholar 

  4. Vignault C, Vachaud M, Cakir B et al (2005) VvHT1 encodes a monosaccharide transporter expressed in the conducting complex of the grape berry phloem. J Exp Bot 56(415):1409–1418. https://doi.org/10.1093/jxb/eri142

    Article  CAS  PubMed  Google Scholar 

  5. Schussler A, Martin H, Cohen D et al (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444(7121):933–936. https://doi.org/10.1038/nature05364

    Article  PubMed  Google Scholar 

  6. Price DRG, Tibbles K, Shigenobu S et al (2010) Sugar transporters of the major facilitator superfamily in aphids; from gene prediction to functional characterization. Insect Mol Biol 19(2):97–112. https://doi.org/10.1111/j.1365-2583.2009.00918.x

    Article  CAS  PubMed  Google Scholar 

  7. Chen L, Hou B, Lalonde S et al (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468(7323):527–532. https://doi.org/10.1038/nature09606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Young E, Poucher A, Comer A et al (2011) Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl Environ Microbiol 77(10):3311–3319. https://doi.org/10.1128/AEM.02651-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coelho MA, Goncalves C, Sampaio JP et al (2013) Extensive intra-kingdom horizontal gene transfer converging on a fungal fructose transporter gene. PLoS Genet 9(6):e1003587. https://doi.org/10.1371/journal.pgen.1003587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xuan YH, Hu YB, Chen L et al (2013) Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proc Natl Acad Sci U S A 110(39):E3685–E3694. https://doi.org/10.1073/pnas.1311244110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Young EM, Comer AD, Huang H et al (2012) A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metab Eng 14(4):401–411. https://doi.org/10.1016/j.ymben.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  12. Subtil T, Boles E (2012) Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 5(1):14. https://doi.org/10.1186/1754-6834-5-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang C, Bao X, Li Y et al (2015) Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization. Metab Eng 30:79–88. https://doi.org/10.1016/j.ymben.2015.04.007

    Article  PubMed  Google Scholar 

  14. Subtil T, Boles E (2011) Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters. Biotechnol Biofuels 4:38. https://doi.org/10.1186/1754-6834-4-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jordan P, Choe J, Boles E et al (2016) Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters. Sci Rep 6:23502. https://doi.org/10.1038/srep23502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scarcelli JJ, Colussi PA, Fabre A et al (2012) Uptake of radiolabeled GlcNAc into Saccharomyces cerevisiae via native hexose transporters and its in vivo incorporation into GPI precursors in cells expressing heterologous GlcNAc kinase. FEMS Yeast Res 12(3):305–316. https://doi.org/10.1111/j.1567-1364.2011.00778.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Farwick A, Bruder S, Schadeweg V et al (2014) Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci U S A 111(14):5159–5164. https://doi.org/10.1073/pnas.1323464111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kasahara T, Kasahara M (1996) Expression of the rat GLUT1 glucose transporter in the yeast Saccharomyces cerevisiae. Biochem J 315:177–182. https://doi.org/10.1042/bj3150177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kasahara T, Kasahara M (1997) Characterization of rat Glut4 glucose transporter expressed in the yeast Saccharomyces cerevisiae: comparison with Glut1 glucose transporter. Biochim Biophys Acta 1324(1):111–119. https://doi.org/10.1016/S0005-2736(96)00217-9

    Article  CAS  PubMed  Google Scholar 

  20. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34. https://doi.org/10.1038/nprot.2007.13

    Article  CAS  PubMed  Google Scholar 

  21. Guthrie C, Fink GR (eds) (2002) Guide to yeast genetics and molecular and cell biology. Methods in enzymology. Acad. Press, Amsterdam

    Google Scholar 

  22. Oldenburg KR, Vo KT, Michaelis S et al (1997) Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res 25(2):451–452. https://doi.org/10.1093/nar/25.2.451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gietz RD, Schiestl RH (2007) Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):1–4. https://doi.org/10.1038/nprot.2007.17

    Article  CAS  PubMed  Google Scholar 

  24. Boles E (2002) Yeast as a model system for studying glucose transport. In: Quick MW, Sibley DR (eds) Transmembrane transporters. Wiley, Hoboken, NJ, pp 19–36

    Chapter  Google Scholar 

  25. Boles E, Zimmermann FK (1993) Saccharomyces cerevisiae phosphoglucose isomerase and fructose bisphosphate aldolase can be replaced functionally by the corresponding enzymes of Escherichia coli and Drosophila melanogaster. Curr Genet 23(3):187–191. https://doi.org/10.1007/BF00351494

    Article  CAS  PubMed  Google Scholar 

  26. Nickoloff JA (ed) (1995) Electroporation protocols for microorganisms. Methods in molecular biology, v. 47. Humana Press, Totowa, NJ

    Google Scholar 

Download references

Acknowledgement

We thank Dr. Joanna Tripp for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Boles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boles, E., Oreb, M. (2018). A Growth-Based Screening System for Hexose Transporters in Yeast. In: Lindkvist-Petersson, K., Hansen, J. (eds) Glucose Transport. Methods in Molecular Biology, vol 1713. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7507-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7507-5_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7506-8

  • Online ISBN: 978-1-4939-7507-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics