Skip to main content
Log in

Production of tannase through solid state fermentation using Indian Rosewood (Dalbergia Sissoo)sawdust—a timber industry waste

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The tannase producing strain Aspergillus heteromorphus MTCC 8818 was used in the present study for the production of tannase under solid state fermentation using Rosewood (Dalbergia sissoo) sawdust—a timber industry waste—as substrate. Various physico-chemical parameters were optimized for extracellular yield of tannase. Maximum tannase (1.84 U/g dry substrate) and gallic acid (5.4 mg/g ds) was observed at 30 °C after 96 h of incubation. Czapek dox medium was found to be the best moistening agent, with pH and relative humidity of 5.5 and 70 %, respectively. The constituents of Czapek dox medium were varied to enhance enzyme production. The optimum concentration of modified Czapek dox constituents contained 0.2 % NaNO3, 0.05 % K2HPO4 and MgSO4, 0.15 % KCl. Among the additional salts supplemented to Czapek dox medium, ZnSO4 and CuSO4 were found to have a stimulating effect, with a relative tannase activity of 116 and 111 %, respectively. Glucose as an external carbon source was found to be a repressor of enzyme production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguilar CN, Augur C, Favela-Torres E, Viniegra-Gonzalez G (2001) Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: Influence of glucose and tannic acid. J Ind Microbiol Biotechnol 26:296–302

    Article  PubMed  CAS  Google Scholar 

  • Bajpai B, Patil S (2008) A new approach to microbial production of gallic acid. Braz J Microbiol 39:708–711

    Article  Google Scholar 

  • Bardoo S, Gupta R, Saxena RK (1997) Parametric optimization and biochemical regulation of extracellular tannase fom Aspegillus japonicas. Process Biochem 32:135–139

    Article  Google Scholar 

  • Barthomeuf C, Regerat F, Pourrat H (1994) Production, purification and characterization of tannase from Aspergillus niger LCF8. J Ferment Technol 77:137–142

    Google Scholar 

  • Battestin V, Macedo GA (2007) Tannase production by Paecilomyces variotii. Bioresour Technol 98:1832–1837

    Article  PubMed  CAS  Google Scholar 

  • Belmares R, Contreras-Esquivel JC, Rodriguez-Herrera R, Coronel AR, Aguilar CN (2004) Microbial production of tannase: an enzyme with potential use in food industry. Lebensm Wiss Technol 37:857–864

    Article  CAS  Google Scholar 

  • Beniwal V, Chhokar V (2010) Statistical optimization of culture condition for tannase production by Aspergillus awamori MTCC 9299 under submerged fermentation. Asian J Biotechnol 2:46–52

    Article  CAS  Google Scholar 

  • Bhat TK, Singh B, Sharma OP (1998) Microbial degradation of tannins-a current perspective. Biodegradation 9:343–357

    Article  PubMed  CAS  Google Scholar 

  • Chávez-González M, Rodríguez-Durán LV, Balagurusamy N, Prado-Barragán A, Rodríguez R, Contreras JC, Aguilar CN (2011) Biotechnological advances and challenges of tannase: an overview 4:445–459

    Google Scholar 

  • Chhokar V, Sangwan M, Beniwal V, Nehra K, Nehra KS (2010a) Effect of additives on the activity of tannase from Aspergillus awamori MTCC 9299. Appl Biochem Biotechnol 160:2256–2264

    Article  PubMed  CAS  Google Scholar 

  • Chhokar V, Seema Beniwal V, Salar RK, Nehra KS, Kumar A, Rana JS (2010b) Purification and characterization of extracellular tannin acyl hydrolase from Aspergillus heteromorphus MTCC 8818. Biotechnol Bioprocess Eng 15:793–799

    Article  CAS  Google Scholar 

  • Curiel JA, Rodri´Guez H, Acebro I, Manchen JM, Rivas BD, Munoz R (2009) Production and physicochemical properties of recombinant Lactobacillus plantarum tannase. J Agric Food Chem 57:6224–6230

    Article  PubMed  CAS  Google Scholar 

  • Dowd PF (1992) Insect fungal symbionts: a promising source of detoxifying enzymes. J Ind Microbiol 9:149–161

    Article  CAS  Google Scholar 

  • Goel G, Puniya AK, Aguliar CN, Singh K (2005a) Interaction of gut microflora with tannins in feeds. Naturwissenschaften 92:497–503

    Article  PubMed  CAS  Google Scholar 

  • Goel G, Puniya AK, Singh K (2005b) Tannic acid resistance in ruminal streptococcal isolates. J Basic Microbiol 45:243–245

    Article  PubMed  CAS  Google Scholar 

  • Goel G, Kumar A, Beniwal V, Raghav M, Puniya AK, Singh K (2011) Degradation of tannic acid and purification and characterization of tannase from Enterococcus faecalis. Int Biodeter Biodegr 65:1061–1065

    Article  CAS  Google Scholar 

  • Haggerman AE, Butler LG (1978) Protein precipitation method for determination of tannins. J Agric Food Chem 26:809–812

    Article  Google Scholar 

  • Kar B, Banerjee R (2000) Biosynthesis of tannin acyl hydrolase from tannin rich forest residue under different fermentation conditions. J Ind Microbiol Biotechnol 25:29–38

    Article  CAS  Google Scholar 

  • Kar B, Banerjee R, Bhattacharyya BC (2002) Optimization of physicochemical parameters for gallic acid production by evolutionary operation-factorial design technique. Process Biochem 37:1395–1401

    Article  CAS  Google Scholar 

  • Kar B, Banerjee R, Bhattacharyya BC (2003) Effect of additives on the behavioural properties of tannin acyl hydrolase. Process Biochem 38:1285–1293

    Article  CAS  Google Scholar 

  • Kavya V, Padmavathi T (2009) Optimization of Growth Conditions for Xylanase Production by Aspergillus niger in Solid State Fermentation. Polish J Microbiol 58:125–130

    CAS  Google Scholar 

  • Kumar R, Sharma J, Singh R (2007) Production of tannase from Aspergillus ruber under solid-state fermentation using Jamun (Syzygium cumini) leaves. Microbiol Res 162:384–390

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Kumar A, Nagpal R, Sharma J, Kumari A (2010) A novel and sensitive plate assay for screening of tannase producing bacteria. Ann Microbiol 60:177–179

    Article  CAS  Google Scholar 

  • Lagemaat J, Pyle DL (2005) Modelling the uptake and growth kinetics of Penicillium glabrum in tannic acid-containing solid state fermentation for tannase production. Process Biochem 40:1773–1782

    Article  Google Scholar 

  • Lokeswari N, Raju KJ (2007) Tannase production by Aspergillus niger. Electron J Chem 4:192–198

    CAS  Google Scholar 

  • Manjit Yadav A, Aggarwal NK, Kumar K, Kumar A (2008) Tannase production by Aspergillus fumigatus MA under solid-state fermentation. World J Microbiol Biotechnol 24:3023–3030

    Article  CAS  Google Scholar 

  • Mata-Gomez M, Rodríguez LV, Ramos EL, Renovato J, Cruz-Hernández MA, Rodríguez R, Contreras J, Aguilar CN (2009) A Novel Tannase from the Xerophilic Fungus Aspergillus niger GH1. J Microbiol Biotechnol 19:987–996

    Article  PubMed  Google Scholar 

  • Mondal KC, Banerjee D, Jana M, Pati BR (2001) Colorimetric assay method for determination of the tannase activity. Anal Biochem 295:168–171

    Article  PubMed  CAS  Google Scholar 

  • Renovato J, Gutiérrez-Sánchez G, Rodríguez-Durán LV, Bergman C, Rodríguez R, Aguilar CN (2011) Differential properties of Aspergillus niger tannase produced under solid-state and submerged fermentations. Appl Biochem Biotechnol 165:382–395

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues THS, Dantas MAA, Pinto GAS, Gonçalves LRB (2007) Tannase production by solid state fermentation of cashew apple bagasse. Appl Biochem Biotechnol 136–140:675–688

    Article  Google Scholar 

  • Rodrigues THS, Pinto GAS, Gonçalves LBR (2008) Effects of inoculum concentration, temperature, and carbon sources on tannase production during solid state fermentation of cashew apple bagasse. Biotechnol Bioprocess Eng 13:571–576

    Article  CAS  Google Scholar 

  • Sabu A, Pandey A, Daud MJ, Szakacs G (2005) Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresour Technol 96:1223–1228

    Article  PubMed  CAS  Google Scholar 

  • Sabu A, Augur C, Swati C, Pandey A (2006) Tannase production by Lactobacillus sp. ASR-S1 under solid-state fermentation. Process Biochem 41:575–580

    Article  CAS  Google Scholar 

  • Selwal MK, Selwal KK (2012) High-level tannase production by Penicillium atramentosum KM using agro residues under submerged fermentation. Ann Microbiol 62:139–148

    Article  CAS  Google Scholar 

  • Trevino-Cueto B, Luis M, Contreras-Esquivel JC, Rodríguez R, Aguilera A, Aguilar CN (2007) Gallic acid and tannase accumulation during fungal solid state culture of a tannin-rich desert plant (Larrea tridentata Cov.). Bioresour Technol 98:721–724

    Article  PubMed  CAS  Google Scholar 

  • Yu XW, Li YQ (2006) Kinetics and thermodynamics of synthesis of propyl gallate by mycelium-bound tannase from Aspergillus niger in organic solvent. J Mol Catal B Enzym 40:44–50

    Article  CAS  Google Scholar 

  • Yu X, Li Y, Wu D (2004) Enzymatic synthesis of gallic acid esters using microencapsulated tannase: effect of organic solvents and enzyme specificity. J Mol Catal B Enzym 30:69–73

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Beniwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beniwal, V., Rajesh, Goel, G. et al. Production of tannase through solid state fermentation using Indian Rosewood (Dalbergia Sissoo)sawdust—a timber industry waste. Ann Microbiol 63, 583–590 (2013). https://doi.org/10.1007/s13213-012-0508-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0508-6

Keywords

Navigation