Skip to main content
Log in

Effect of sodium L-glutamate on growth and survival of Lactobacillus brevis NCL912 at different acidic pH

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Lactobacillus brevis NCL912 is a high γ-aminobutyric acid-producing strain isolated from fermented vegetables. In the present study, the growth and survival of L. brevis NCL912 were investigated in media with or without sodium L-glutamate at different acidic pH levels. L. brevis NCL912 was incubated in acid-modified MRS broth with or without sodium L-glutamate. The results show that L. brevis NCL912 grows at pH > 3.0 in the media with or without sodium L-glutamate, and the optimal growth pH is 5.0. L. brevis NCL912 could be survive for more than 2 h at pH 2.0. The addition of sodium L-glutamate significantly enhances acid resistance and glutamate decarboxylase activity (p < 0.05). L. brevis NCL912 displays resistance to acid stress. Sodium L-glutamate is an important factor for the growth and survival of L. brevis NCL912 at different acidic pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alonso-Hernando A, Alonso-Calleja C, Capita R (2009) Comparative analysis of acid resistance in Listeria monocytogenes and Salmonella enterica strains before and after exposure to poultry decontaminants. Role of the glutamate decarboxylase (GAD) system. Food Microbiol 26:905–909

    Article  PubMed  CAS  Google Scholar 

  • Bown AW, Macgregor KB, Shelp BJ (2006) Gamma-aminobutyrate: defense against invertebrate pests? Trends Plant Sci 11:424–427

    Article  PubMed  CAS  Google Scholar 

  • Carroll AD, Fox GG, Laurie S, Phillips R, Ratcliffe RG, Stewart GR (1994) Ammonium assimilation and the role of [gamma]-aminobutyric acid in pH homeostasis in carrot cell suspensions. Plant Physiol 106:513–520

    PubMed  CAS  Google Scholar 

  • Cotter PD, Gahan CG, Hill C (2001) A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol Microbiol 40:465–475

    Article  PubMed  CAS  Google Scholar 

  • Crawford LA, Bown AW, Breitkreuz KE, Guinel FC (1994) The synthesis of [gamma]-aminobutyric acid in response to treatments reducing cytosolic pH. Plant Physiol 104:865–871

    PubMed  CAS  Google Scholar 

  • Hiraga K, Ueno Y, Oda K (2008) Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate. Biosci Biotechnol Biochem 72:1299–1306

    Article  PubMed  CAS  Google Scholar 

  • Komatsuzaki N, Nakamura T, Kimura T, Shima J (2008) Characterization of glutamate decarboxylase from a high gamma-aminobutyric acid (GABA)-producer, Lactobacillus paracasei. Biosci Biotechnol Biochem 72:278–285

    Article  PubMed  CAS  Google Scholar 

  • Li H, Gao D, Cao Y, Xu H (2008) A high γ-aminobutyric acid-producing Lactobacillus brevis isolated from Chinese traditional paocai. Ann Microbiol 58:649–653

    Article  CAS  Google Scholar 

  • Li H, Qiu T, Cao Y, Yang J, Huang Z (2009) Pre-staining paper chromatography method for quantification of gamma-aminobutyric acid. J Chromatogr A 1216:5057–5060

    Article  PubMed  CAS  Google Scholar 

  • Li H, Qiu T, Huang G, Cao Y (2010) Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb Cell Fact 9:85

    Article  PubMed  Google Scholar 

  • Lin J, Lee IS, Frey J, Slonczewski JL, Foster JW (1995) Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol 177:4097–4104

    PubMed  CAS  Google Scholar 

  • Lucas PM, Blancato VS, Claisse O, Magni C, Lolkema JS, Lonvaud-Funel A (2007) Agmatine deiminase pathway genes in Lactobacillus brevis are linked to the tyrosine decarboxylation operon in a putative acid resistance locus. Microbiology 153:2221–2230

    Article  PubMed  CAS  Google Scholar 

  • Nomura M, Nakajima I, Fujita Y, Kobayashi M, Kimoto H, Suzuki I, Aso H (1999) Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiology 145:1375–1380

    Article  PubMed  CAS  Google Scholar 

  • Richard H, Foster JW (2004) Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186:6032–6041

    Article  PubMed  CAS  Google Scholar 

  • Richard H, Foster JW (2007) Sodium regulates Escherichia coli acid resistance, and influences GadX- and GadW-dependent activation of gadE. Microbiology 153:3154–3161

    Article  PubMed  CAS  Google Scholar 

  • Small PL, Waterman SR (1998) Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli. Trends Microbiol 6:214–216

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks to Doctor Haixing Li for his helpful suggestions and assistance. The work was supported by the Education Department of Jiangxi province (No.S00488).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusheng Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, G., Li, C. & Cao, Y. Effect of sodium L-glutamate on growth and survival of Lactobacillus brevis NCL912 at different acidic pH. Ann Microbiol 62, 351–355 (2012). https://doi.org/10.1007/s13213-011-0269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0269-7

Keywords

Navigation