Skip to main content
Log in

All-Rounder Liposomes in Cancer Immunotherapy: Strategies and Design Applications of Engineered Liposomal Nanomaterials

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Cancer is a major health problem worldwide, which is responsible for more than 10 million deaths annually. Cancer treatment has traditionally been based on chemotherapy and surgery; however, owing to cytotoxicity, drug resistance, and non-specificity, cancer immunotherapy, which involves using the patient’s own immune system in treatment, has recently gained prominence as a new cancer treatment strategy. Cancer immunotherapy includes strategies such as adoptive T-cell therapy, immune checkpoint blockade, and cancer vaccines, all of which have shown significant anticancer effects. To improve the therapeutic effectiveness and safety and lower the side effects of these strategies, nano- and micro-technologies are being applied to advance the technology. Several studies have reported the use of liposomes (i.e., lipid nanoparticles) in the context of cancer treatment. Liposomes, which are excellent carriers with biocompatibility, amphiphilicity, and drug protection, can be used for passive and active targeting to enhance the effectiveness of cancer immunotherapy. In this review, we summarize cancer immunotherapy and discusses the strategies and benefits of using various liposomes in cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nia, H.T., Munn, L.L., Jain, R.K.: Physical traits of cancer. Science 370, 6516 (2020)

    Article  Google Scholar 

  2. Fares, J., et al.: Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct. Target. Ther. 5(1), 28 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mattiuzzi, C., Lippi, G.: Current cancer epidemiology. J Epidemiol Glob Health 9(4), 217–222 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Soerjomataram, I., Bray, F.: Planning for tomorrow: global cancer incidence and the role of prevention 2020–2070. Nat. Rev. Clin. Oncol. 18(10), 663–672 (2021)

    Article  PubMed  Google Scholar 

  5. Zugazagoitia, J., et al.: Current challenges in cancer treatment. Clin. Ther. 38(7), 1551–1566 (2016)

    Article  PubMed  Google Scholar 

  6. Son, M.H., et al.: Recent advances in electrochemical and optical biosensors for cancer biomarker detection. BioChip J. 17(1), 44–67 (2023)

    Article  CAS  Google Scholar 

  7. Gavas, S., Quazi, S., Karpinski, T.M.: Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res. Lett. 16(1), 173 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Debela, D.T., et al.: New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 9, 20503121211034370 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lesterhuis, W.J., Haanen, J.B., Punt, C.J.: Cancer immunotherapy–revisited. Nat. Rev. Drug Discov. 10(8), 591–600 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. Wei, G., et al.: Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics 11(13), 6370–6392 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perez-Herrero, E., Fernandez-Medarde, A.: Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 93, 52–79 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. Yip, H.Y.K., Papa, A.: Signaling pathways in cancer: therapeutic targets, combinatorial treatments, and new developments. Cells 10(3), 659 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhong, L., et al.: Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 6(1), 201 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vanneman, M., Dranoff, G.: Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 12(4), 237–251 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tan, S., Li, D., Zhu, X.: Cancer immunotherapy: pros, cons and beyond. Biomed. Pharmacother. 124, 109821 (2020)

    Article  PubMed  Google Scholar 

  16. Riley, R.S., et al.: Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18(3), 175–196 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi, S.Y., et al.: Enhanced antitumor effect of the combination of Bacille Calmette-Guérin and an immune checkpoint inhibitor in bladder cancer-on-a-chip. BioChip J. 83, S610 (2023)

    Google Scholar 

  18. Huda, S., Alam, M.A., Sharma, P.K.: Smart nanocarriers-based drug delivery for cancer therapy: an innovative and developing strategy. J. Drug Deliv. Sci. Technol. 60, 102018 (2020)

    Article  CAS  Google Scholar 

  19. Kenchegowda, M., et al.: Smart nanocarriers as an emerging platform for cancer therapy: a review. Molecules 27(1), 146 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang, X., Zhang, H., Chen, X.: Drug resistance and combating drug resistance in cancer. Cancer Drug Resist 2(2), 141–160 (2019)

    PubMed  PubMed Central  Google Scholar 

  21. Kaur, G., et al.: Drug-metabolizing enzymes: role in drug resistance in cancer. Clin. Transl. Oncol. 22(10), 1667–1680 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. Liu, S., et al.: The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J. Control. Release 335, 1–20 (2021)

    Article  CAS  PubMed  Google Scholar 

  23. Disis, M.L.: Mechanism of action of immunotherapy. Semin. Oncol. 41(Suppl 5), S3-13 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. He, X., Xu, C.: Immune checkpoint signaling and cancer immunotherapy. Cell Res. 30(8), 660–669 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gao, S., et al.: Nanotechnology for boosting cancer immunotherapy and remodeling tumor microenvironment: the horizons in cancer treatment. ACS Nano 15(8), 12567–12603 (2021)

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, H., Chen, J.: Current status and future directions of cancer immunotherapy. J. Cancer 9(10), 1773–1781 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Christofi, T., et al.: Current perspectives in cancer immunotherapy. Cancers (Basel) 11(10), 1472 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. Sterner, R.C., Sterner, R.M.: CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11(4), 69 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marofi, F., et al.: CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res. Ther. 12(1), 81 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Safarzadeh Kozani, P., Safarzadeh Kozani, P., Rahbarizadeh, F.: CAR-T cell therapy in T-cell malignancies: Is success a low-hanging fruit? Stem Cell Res. Ther. 12(1), 527 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shiravand, Y., et al.: Immune checkpoint inhibitors in cancer therapy. Curr. Oncol. 29(5), 3044–3060 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wei, S.C., Duffy, C.R., Allison, J.P.: Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8(9), 1069–1086 (2018)

    Article  PubMed  Google Scholar 

  33. Robert, C.: A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 11(1), 3801 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marin-Acevedo, J.A., Kimbrough, E.O., Lou, Y.: Next generation of immune checkpoint inhibitors and beyond. J. Hematol. Oncol. 14(1), 45 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, J., et al.: Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J. Hematol. Oncol. 15(1), 28 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  36. Elsheikh, R., Makram, A.M., Huy, N.T.: Therapeutic cancer vaccines and their future implications. Vaccines (Basel) 11(3), 660 (2023)

    Article  PubMed  Google Scholar 

  37. Rurik, J.G., et al.: CAR T cells produced in vivo to treat cardiac injury. Science 375(6576), 91–96 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye, Z., et al.: In vitro engineering chimeric antigen receptor macrophages and T cells by lipid nanoparticle-mediated mRNA delivery. ACS Biomater. Sci. Eng. 8(2), 722–733 (2022)

    Article  CAS  PubMed  Google Scholar 

  39. Ma, G.L., Lin, W.F.: Immune checkpoint inhibition mediated with liposomal nanomedicine for cancer therapy. Mil. Med. Res. 10(1), 20 (2023)

    PubMed  PubMed Central  Google Scholar 

  40. Mai, Y., et al.: Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity. Cell. Immunol. 354, 104143 (2020)

    Article  CAS  PubMed  Google Scholar 

  41. Yao, Y., et al.: Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 7, 193 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dang, Y., Guan, J.: Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater. Med. 1, 10–19 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  43. Akkin, S., Varan, G., Bilensoy, E.: A review on cancer immunotherapy and applications of nanotechnology to chemoimmunotherapy of different cancers. Molecules 26(11), 3382 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Debele, T.A., Yeh, C.F., Su, W.P.: Cancer immunotherapy and application of nanoparticles in cancers immunotherapy as the delivery of immunotherapeutic agents and as the immunomodulators. Cancers (Basel) 12(12), 3773 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nsairat, H., et al.: Liposomes: structure, composition, types, and clinical applications. Heliyon 8(5), e09394 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tenchov, R., et al.: Lipid nanoparticles horizontal line from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15(11), 16982–17015 (2021)

    Article  CAS  PubMed  Google Scholar 

  47. Sercombe, L., et al.: Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  48. Olusanya, T.O.B., et al.: Liposomal drug delivery systems and anticancer drugs. Molecules 23(4), 907 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  49. Alavi, M., Hamidi, M.: Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther. 34(1), (2019)

  50. Liu, P., Chen, G., Zhang, J.: A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27(4), 1372 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, Y., Castro Bravo, K.M., Liu, J.: Targeted liposomal drug delivery: a nanoscience and biophysical perspective. Nanoscale Horiz. 6(2), 78–94 (2021)

    Article  CAS  PubMed  Google Scholar 

  52. Alavizadeh, S.H., Soltani, F., Ramezani, M.: Recent advances in immunoliposome-based cancer therapy. Curr. Pharmacol. Rep. 2(3), 129–141 (2016)

    Article  CAS  Google Scholar 

  53. Wang, S., et al.: Liposomes for tumor targeted therapy: a review. Int. J. Mol. Sci. 24(3), 2643 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Beltrán-Gracia, E., et al.: Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol. 10(1), (2019)

  55. Bulbake, U., et al.: Liposomal formulations in clinical use: an updated review. Pharmaceutics 9(2), 12 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  56. Behranvand, N., et al.: Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunol. Immunother. 71(3), 507–526 (2022)

    Article  PubMed  Google Scholar 

  57. Schirrmacher, V.: From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol. 54(2), 407–419 (2019)

    Article  CAS  PubMed  Google Scholar 

  58. Advancing Cancer Therapy: Nat Cancer 2(3), 245–246 (2021)

    Article  Google Scholar 

  59. Senapati, S., et al.: Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 3, 7 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  60. DeVita, V.T., Jr. and E. Chu, A history of cancer chemotherapy. Cancer Res, 2008. 68(21): p. 8643–53.

  61. Goldstein, M., Kastan, M.B.: The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med. 66, 129–143 (2015)

    Article  CAS  PubMed  Google Scholar 

  62. Liu, G., et al.: A Review on Drug Delivery System for Tumor Therapy. Front. Pharmacol. 12, 735446 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Anand, U., et al.: Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis 10(4), 1367–1401 (2023)

    Article  CAS  PubMed  Google Scholar 

  64. Kondo, N., et al.: DNA damage induced by alkylating agents and repair pathways. J Nucleic Acids 2010, 543531 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  65. Valenzuela, M.M., J.W. Neidigh, and N.R. Wall, Antimetabolite Treatment for Pancreatic Cancer. Chemotherapy (Los Angel), 2014. 3(3).

  66. Parker, W.B.: Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 109(7), 2880–2893 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Allen, T.M., Cullis, P.R.: Drug delivery systems: entering the mainstream. Science 303(5665), 1818–1822 (2004)

    Article  CAS  PubMed  Google Scholar 

  68. Wilczewska, A.Z., Niemirowicz, K., Markiewicz, K.H., Car, H.: Nanoparticles as drug delivery systems. Pharmacol. Rep. 64(5), 1020–1037 (2012)

    Article  CAS  PubMed  Google Scholar 

  69. Karimi, M., et al.: Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 45(5), 1457–1501 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ding, C., et al.: Recent advances in stimuli-responsive release function drug delivery systems for tumor treatment. Molecules 21(12), 1715 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  71. Briolay, T., et al.: Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol. Cancer 20(1), 55 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hayashi, K., et al.: High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. ACS Appl. Mater. Interfaces 2(7), 1903–1911 (2010)

    Article  CAS  PubMed  Google Scholar 

  73. Husseini, G.A.W.G.P.: Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv. Drug Deliv. Rev. 30(10), 1137–1152 (2008)

    Article  Google Scholar 

  74. Rommasi, F., Esfandiari, N.: Liposomal nanomedicine: applications for drug delivery in cancer therapy. Nanoscale Res. Lett. 16(1), 95 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Allen, T.M., Cullis, P.R.: Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65(1), 36–48 (2013)

    Article  CAS  PubMed  Google Scholar 

  76. Chang, H.I., Yeh, M.K.: Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int. J. Nanomed. 7, 49–60 (2012)

    CAS  Google Scholar 

  77. Hua, S.P.J.C.: Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: a potential novel treatment of acute and chronic pain conditions. Pain Physician 16, E199–E216 (2013)

    Article  PubMed  Google Scholar 

  78. Harris, L., et al.: Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer 94(1), 25–36 (2002)

    Article  CAS  PubMed  Google Scholar 

  79. Khalil, D.N., et al.: The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 13(5), 273–290 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Burugu, S., Dancsok, A.R., Nielsen, T.O.: Emerging targets in cancer immunotherapy. Semin. Cancer Biol. 52(Pt 2), 39–52 (2018)

    Article  CAS  PubMed  Google Scholar 

  81. Southam, C.M., Brunschwig, A., Levin, A.G., Dizon, Q.S.: Effect of leukocytes on transplant ability of human cancer. Cancer 19(11), 1743–1753 (1966)

    Article  CAS  PubMed  Google Scholar 

  82. Met, Ö., et al.: Principles of adoptive T cell therapy in cancer. Semin. Immunopathol. 41(1), 49–58 (2019)

    Article  PubMed  Google Scholar 

  83. Baars, J.W., Fonk, J.C., Scheper, R.J., von Blomberg-van, B.M., der Flier, H., von Bril, P., Valk, H.M., Pinedo, J.W.: Treatment with tumour infiltrating lymphocytes and interleukin-2 in patients with metastatic melanoma A pilot study. Clin. Trial 4(4), 289–297 (1992)

    CAS  Google Scholar 

  84. Fang, K.K., Lee, J.B., Zhang, L.: Adoptive cell therapy for T-cell malignancies. Cancers (Basel) 15(1), 94 (2022)

    Article  PubMed  Google Scholar 

  85. Wang, S., et al.: Perspectives of tumor-infiltrating lymphocyte treatment in solid tumors. BMC Med. 19(1), 140 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhang, Y., et al.: TCR engineered T cells for solid tumor immunotherapy. Exp. Hematol. Oncol. 11(1), 38 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Clay, T.M., Custer, M.C., Sachs, J., Hwu, P., Rosenberg, S.A., Nishimura, M.I.: Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J. Immunol. 163(1), 507–513 (1999)

    Article  CAS  PubMed  Google Scholar 

  88. Frankel, T.L., et al.: Both CD4 and CD8 T cells mediate equally effective in vivo tumor treatment when engineered with a highly avid TCR targeting tyrosinase. J. Immunol. 184(11), 5988–5998 (2010)

    Article  CAS  PubMed  Google Scholar 

  89. Wei, T., et al.: Generation of neoantigen-specific T cells for adoptive cell transfer for treating head and neck squamous cell carcinoma. Oncoimmunology 10(1), 1929726 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhang, C., et al.: Engineering CAR-T cells. Biomark. Res. 5, 22 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  91. Larson, R.C., Maus, M.V.: Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer 21(3), 145–161 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dagar, G., et al.: Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J. Transl. Med. 21(1), 449 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  93. Byun, J.M., Yoon, S.-S.: Chimeric antigen receptor-T cell therapy. Korean J. Med. 97(4), 229–237 (2022)

    Article  CAS  Google Scholar 

  94. Gong, N., et al.: Nanomaterials for T-cell cancer immunotherapy. Nat. Nanotechnol. 16(1), 25–36 (2021)

    Article  CAS  PubMed  Google Scholar 

  95. Di Vito, C., et al.: NK cells to cure cancer. Semin. Immunol. 41, 101272 (2019)

    Article  PubMed  Google Scholar 

  96. Wang, X., et al.: Glycoengineering of natural killer cells with CD22 ligands for enhanced anticancer immunotherapy. ACS Cent. Sci. 6(3), 382–389 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lanitis, E., Irving, M., Coukos, G.: Targeting the tumor vasculature to enhance T cell activity. Curr. Opin. Immunol. 33, 55–63 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Postow, M.A., Sidlow, R., Hellmann, M.D.: Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378(2), 158–168 (2018)

    Article  CAS  PubMed  Google Scholar 

  99. Evans, E.R., et al.: Metallic nanoparticles for cancer immunotherapy. Mater Today (Kidlington) 21(6), 673–685 (2018)

    Article  CAS  PubMed  Google Scholar 

  100. Bode, C., et al.: CpG DNA as a vaccine adjuvant. Expert Rev. Vaccines 10(4), 499–511 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lin, A.Y., et al.: Gold nanoparticle delivery of modified CpG stimulates macrophages and inhibits tumor growth for enhanced immunotherapy. PLoS ONE 8(5), e63550 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Almeida, J.P., Figueroa, E.R., Drezek, R.A.: Gold nanoparticle mediated cancer immunotherapy. Nanomedicine 10(3), 503–514 (2014)

    Article  CAS  PubMed  Google Scholar 

  103. Radovic-Moreno, A.F., et al.: Immunomodulatory spherical nucleic acids. Proc. Natl. Acad. Sci. U. S. A. 112(13), 3892–3897 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Almeida, J.P.M., et al.: In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models. Small 11(12), 1453–1459 (2015)

    Article  CAS  PubMed  Google Scholar 

  105. Frey, B., et al.: Old and new facts about hyperthermia-induced modulations of the immune system. Int. J. Hyperthermia 28(6), 528–542 (2012)

    Article  CAS  PubMed  Google Scholar 

  106. Toraya-Brown, S., et al.: Local hyperthermia treatment of tumors induces CD8(+) T cell-mediated resistance against distal and secondary tumors. Nanomedicine 10(6), 1273–1285 (2014)

    Article  CAS  PubMed  Google Scholar 

  107. Daftarian, P., et al.: Peptide-conjugated PAMAM dendrimer as a universal DNA vaccine platform to target antigen-presenting cells. Cancer Res. 71(24), 7452–7462 (2011)

    Article  CAS  PubMed  Google Scholar 

  108. Simhadri, V.R., et al.: Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function. PLoS ONE 3(10), e3377 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  109. Guo, H.C., et al.: Immunization of mice by hollow mesoporous silica nanoparticles as carriers of porcine circovirus type 2 ORF2 protein. Virol J 9, 108 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gu, Z., et al.: Liposome-based drug delivery systems in cancer immunotherapy. Pharmaceutics 12(11), 1054 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gao, A., et al.: Overview of recent advances in liposomal nanoparticle-based cancer immunotherapy. Acta Pharmacol. Sin. 40(9), 1129–1137 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rani, V., Venkatesan, J., Prabhu, A.: Liposomes-a promising strategy for drug delivery in anticancer applications. J. Drug Deliv. Sci. Technol. 76, 103739 (2022)

    Article  Google Scholar 

  113. Moholkar, D.N., et al.: Advances in lipid-based carriers for cancer therapeutics: liposomes, exosomes and hybrid exosomes. Cancer Lett. 565, 216220 (2023)

    Article  CAS  PubMed  Google Scholar 

  114. Bayyurt, B., et al.: Encapsulation of two different TLR ligands into liposomes confer protective immunity and prevent tumor development. J. Control. Release 247, 134–144 (2017)

    Article  CAS  PubMed  Google Scholar 

  115. Barnier Quer, C., et al.: Cationic liposomes as adjuvants for influenza hemagglutinin: more than charge alone. Eur. J. Pharm. Biopharm. 81(2), 294–302 (2012)

    Article  CAS  PubMed  Google Scholar 

  116. Ding, Y., et al.: Application of lipid nanovesicle drug delivery system in cancer immunotherapy. J. Nanobiotechnol. 20(1), 214 (2022)

    Article  CAS  Google Scholar 

  117. Liu, B., et al.: Equipping cancer cell membrane vesicles with functional DNA as a targeted vaccine for cancer immunotherapy. Nano Lett. 21(22), 9410–9418 (2021)

    Article  CAS  PubMed  Google Scholar 

  118. Tu, K., et al.: Combination of chidamide-mediated epigenetic modulation with immunotherapy: boosting tumor immunogenicity and response to PD-1/PD-L1 blockade. ACS Appl. Mater. Interfaces 13(33), 39003–39017 (2021)

    Article  CAS  PubMed  Google Scholar 

  119. Du, S., et al.: Adoptive cell therapy for cancer treatment. Exploration 3(4), (2023)

  120. Cremolini, C., et al.: Advanced nanotechnology for enhancing immune checkpoint blockade therapy. Nanomaterials (Basel) 11(3), 661 (2021)

    Article  CAS  PubMed  Google Scholar 

  121. Marin-Acevedo, J.A., et al.: Next generation of immune checkpoint therapy in cancer: new developments and challenges. J. Hematol. Oncol. 11(1), 39 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  122. Fujii, T., et al.: Biomarkers of response to immune checkpoint blockade in cancer treatment. Crit. Rev. Oncol. Hematol. 130, 108–120 (2018)

    Article  PubMed  Google Scholar 

  123. Fobian, S.F., Cheng, Z., Ten Hagen, T.L.M.: Smart lipid-based nanosystems for therapeutic immune induction against cancers: perspectives and outlooks. Pharmaceutics 14(1), 26 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  124. Boone, C.E., et al.: Combining nanomedicine and immune checkpoint therapy for cancer immunotherapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 14(1), e1739 (2022)

    Article  PubMed  Google Scholar 

  125. Park, J.W., et al.: Immunoliposomes for cancer treatment. Adv. Pharmacol. 40, 399–435 (1997)

    Article  CAS  PubMed  Google Scholar 

  126. Dermani, F.K., et al.: PD-1/PD-L1 immune checkpoint: potential target for cancer therapy. J. Cell. Physiol. 234(2), 1313–1325 (2019)

    Article  CAS  PubMed  Google Scholar 

  127. Buchbinder, E.I., Desai, A.: CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39(1), 98–106 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nikpoor, A.R., et al.: Improved tumor accumulation and therapeutic efficacy of CTLA-4-blocking antibody using liposome-encapsulated antibody: In vitro and in vivo studies. Nanomedicine 13(8), 2671–2682 (2017)

    Article  CAS  PubMed  Google Scholar 

  129. Pandey, P., et al.: Revolutionization in cancer therapeutics via targeting major immune checkpoints PD-1, PD-L1 and CTLA-4. Pharmaceuticals (Basel) 15(3), 335 (2022)

    Article  CAS  PubMed  Google Scholar 

  130. Alimohammadi, R., et al.: Encapsulated checkpoint blocker before chemotherapy: the optimal sequence of anti-CTLA-4 and doxil combination therapy. Int. J. Nanomed. 15, 5279–5288 (2020)

    Article  CAS  Google Scholar 

  131. Yang, W., et al.: A novel CTLA-4 blocking strategy based on nanobody enhances the activity of dendritic cell vaccine-stimulated antitumor cytotoxic T lymphocytes. Cell Death Dis. 14(7), 406 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Parry, R.V., et al.: CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell Biol. 25(21), 9543–9553 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Liu, Y., et al.: Tumor microenvironmental ph and enzyme dual responsive polymer-liposomes for synergistic treatment of cancer immuno-chemotherapy. Biomacromol 20(2), 882–892 (2019)

    Article  CAS  Google Scholar 

  134. Merino, M., et al.: Dual activity of PD-L1 targeted Doxorubicin immunoliposomes promoted an enhanced efficacy of the antitumor immune response in melanoma murine model. J. Nanobiotechnol. 19(1), 102 (2021)

    Article  CAS  Google Scholar 

  135. Kim, M., et al.: Aptamer-conjugated nano-liposome for immunogenic chemotherapy with reversal of immunosuppression. J. Control. Release 348, 893–910 (2022)

    Article  CAS  PubMed  Google Scholar 

  136. Hei, Y., et al.: Multifunctional immunoliposomes combining catalase and PD-L1 antibodies overcome tumor hypoxia and enhance immunotherapeutic effects against melanoma. Int. J. Nanomed. 15, 1677–1691 (2020)

    Article  Google Scholar 

  137. Yang, S., et al.: Liposome-mediated PD-L1 multivalent binding promotes the lysosomal degradation of PD-L1 for T cell-mediated antitumor immunity. Biomaterials 290, 121841 (2022)

    Article  CAS  PubMed  Google Scholar 

  138. Li, C., Han, X.: Melanoma cancer immunotherapy using PD-L1 siRNA and imatinib promotes cancer-immunity cycle. Pharm. Res. 37(6), 109 (2020)

    Article  PubMed  Google Scholar 

  139. Zhou, F., et al.: Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade. Adv. Mater. 31(14), e1805888 (2019)

    Article  PubMed  Google Scholar 

  140. Chang, R., et al.: Liposome-based co-immunotherapy with TLR agonist and CD47-SIRPalpha checkpoint blockade for efficient treatment of colon cancer. Molecules 28(7), 3147 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Huang, Z., et al.: Enhanced cancer therapy through synergetic photodynamic/immune checkpoint blockade mediated by a liposomal conjugate comprised of porphyrin and IDO inhibitor. Theranostics 9(19), 5542–5557 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Guo, F., et al.: CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 35(7), 816–826 (2016)

    Article  CAS  PubMed  Google Scholar 

  143. Lu, G., Qiu, Y., Su, X.: Targeting CXCL12-CXCR4 signaling enhances immune checkpoint blockade therapy against triple negative breast cancer. Eur. J. Pharm. Sci. 157, 105606 (2021)

    Article  CAS  PubMed  Google Scholar 

  144. Duong, E., et al.: Type I interferon activates MHC class I-dressed CD11b(+) conventional dendritic cells to promote protective anti-tumor CD8(+) T cell immunity. Immunity 55(2), 308-323e9 (2022)

    Article  CAS  PubMed  Google Scholar 

  145. Farhood, B., Najafi, M., Mortezaee, K.: CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J. Cell. Physiol. 234(6), 8509–8521 (2019)

    Article  CAS  PubMed  Google Scholar 

  146. Miao, L., Zhang, Y., Huang, L.: mRNA vaccine for cancer immunotherapy. Mol. Cancer 20(1), 41 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Saxena, M., et al.: Therapeutic cancer vaccines. Nat. Rev. Cancer 21(6), 360–378 (2021)

    Article  CAS  PubMed  Google Scholar 

  148. Lin, M.J., et al.: Cancer vaccines: the next immunotherapy frontier. Nat Cancer 3(8), 911–926 (2022)

    Article  CAS  PubMed  Google Scholar 

  149. Wu, X., et al.: MYC oncogene is associated with suppression of tumor immunity and targeting Myc induces tumor cell immunogenicity for therapeutic whole cell vaccination. J. Immunother. Cancer 9(3), e001388 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  150. Sprooten, J., et al.: Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 8(11), e1638212 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  151. Schneble, E., et al.: Peptide-based cancer vaccine strategies and clinical results. Methods Mol. Biol. 1403, 797–817 (2016)

    Article  PubMed  Google Scholar 

  152. Liu, W., et al.: Peptide-based therapeutic cancer vaccine: current trends in clinical application. Cell Prolif. 54(5), e13025 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cui, Z.: DNA vaccine. Adv. Genet. 54, 257–289 (2005)

    Article  CAS  PubMed  Google Scholar 

  154. Rezaei, T., et al.: Strategies in DNA vaccine for melanoma cancer. Pigment Cell Melanoma Res. 34(5), 869–891 (2021)

    Article  CAS  PubMed  Google Scholar 

  155. Zhang, X., et al.: Engineered tumor cell-derived vaccines against cancer: The art of combating poison with poison. Bioact. Mater. 22, 491–517 (2023)

    CAS  PubMed  Google Scholar 

  156. Stephens, A.J., Burgess-Brown, N.A., Jiang, S.: Beyond just peptide antigens: the complex world of peptide-based cancer vaccines. Front. Immunol. 12, 696791 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cole, G., et al.: DNA vaccination for prostate cancer: key concepts and considerations. Cancer Nanotechnol 6(1), 2 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  158. Liu, J., et al.: Nanoparticle cancer vaccines: design considerations and recent advances. Asian J. Pharm. Sci. 15(5), 576–590 (2020)

    Article  PubMed  Google Scholar 

  159. Aikins, M.E., Xu, C., Moon, J.J.: Engineered nanoparticles for cancer vaccination and immunotherapy. Acc. Chem. Res. 53(10), 2094–2105 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Byun, M.J., et al.: Advances in nanoparticles for effective delivery of RNA therapeutics. BioChip J. 16(2), 128–145 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gong, N., et al.: Proton-driven transformable nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 15(12), 1053–1064 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Nam, J., et al.: Photothermal therapy combined with neoantigen cancer vaccination for effective immunotherapy against large established tumors and distant metastasis. Adv. Ther. (Weinh), 4(8), (2021)

  163. Koshy, S.T., et al.: Liposomal delivery enhances immune activation by STING agonists for cancer immunotherapy. Adv. Biosyst. 1(1–2) (2017)

  164. Grabowska, J., et al.: Liposome induction of CD8(+) T cell responses depends on CD169(+) macrophages and Batf3-dependent dendritic cells and is enhanced by GM3 inclusion. J. Control. Release 331, 309–320 (2021)

    Article  CAS  PubMed  Google Scholar 

  165. Xing, H., Hwang, K., Lu, Y.: Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics 6(9), 1336–1352 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chattergoon, M.A., Robinson, T.M., Boyer, J.D., Weiner, D.B.: Specific immune induction following DNA-based immunization. J. Immunol. 160, 5707–5718 (1998)

    Article  CAS  PubMed  Google Scholar 

  167. Yvonne Perrie, P.M.F.: Gregory Gregoriadis, Liposome-mediated DNA vaccination the effect of vesicle composition. Vaccines 19, 3301–3310 (2001)

    Article  Google Scholar 

  168. Tarahovsky, Y.S., Koynova, R., MacDonald, R.C.: DNA release from lipoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion. Biophys. J. 87(2), 1054–1064 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Huang, T., et al.: Lipid nanoparticle-based mRNA vaccines in cancers: current advances and future prospects. Front. Immunol. 13, 922301 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Woo, S.R., et al.: STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41(5), 830–842 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Fu, J., et al.: STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med. 7(283), 283–352 (2015)

    Article  Google Scholar 

  172. Baird, J.R., et al.: Radiotherapy combined with novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res. 76(1), 50–61 (2016)

    Article  CAS  PubMed  Google Scholar 

  173. Affandi, A.J., et al.: Selective tumor antigen vaccine delivery to human CD169(+) antigen-presenting cells using ganglioside-liposomes. Proc. Natl. Acad. Sci. U. S. A. 117(44), 27528–27539 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhao, Y., et al.: Mannose-modified liposome co-delivery of human papillomavirus type 16 E7 peptide and CpG oligodeoxynucleotide adjuvant enhances antitumor activity against established large TC-1 grafted tumors in mice. Int. J. Nanomed. 15, 9571–9586 (2020)

    Article  CAS  Google Scholar 

  175. Alhamhoom, Y., et al.: Recent advances in the liposomal nanovesicles based immunotherapy in the treatment of cancer: a review. Saudi Pharm. J. 31(2), 279–294 (2023)

    Article  CAS  PubMed  Google Scholar 

  176. Hao, Y., et al.: Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm 4(4), e339 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Chung-Ang University Graduate Research Scholarship in 2022 (Eunseo Jeong), the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No. 2020R1A5A1018052), and the Korea Environment Industry & Technology Institute (KEITI) funded by the Korea Ministry of Environment (MOE) (No. 2022002980003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hee-Young Lee or Jonghoon Choi.

Ethics declarations

Conflict of Interest

Dr. Jonghoon Choi is the CEO/Founder; Dr. Yonghyun Choi is the CTO; and Jayoung Chae, Suyeon Ahn, and Heejin Ha are researchers at the Feynman Institute of Technology at the Nanomedicine Corporation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, G., Choi, Y., Hong, J. et al. All-Rounder Liposomes in Cancer Immunotherapy: Strategies and Design Applications of Engineered Liposomal Nanomaterials. BioChip J (2024). https://doi.org/10.1007/s13206-024-00147-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13206-024-00147-1

Keywords

Navigation