Skip to main content
Log in

Development of Tumor-Vasculature Interaction on Chip Mimicking Vessel Co-Option of Glioblastoma

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Vessel co-option (VC) differs from angiogenesis in that tumor cells grow toward blood vessels. Through VC, tumor cells can receive relatively more nutrients and oxygen from blood vessels. Despite its clinical significance, VC is relatively less studied compared to angiogenesis because of difficulties in longitudinal observation of VC in vivo and lack of proper VC models in vitro. A needle template method in which microchannels are formed in hydrogel by needles was used to form blood vessels and mimic angiogenesis. However, it has not yet been used to mimic VC. In this study, we report the development of VC on chip based on the needle template method. On the VC on chip, the effect of distance between spheroids and blood vessels on VC induction was investigated by seeding glioblastoma (GBM) spheroids 50 and 250 μm from the preformed blood vessels. Irrespective of distance, cancer cells from the spheroids grew toward the blood vessels but did not penetrate the vessels, indicating that GBM cells showed VC-like behavior. These results suggest that our chip could recapitulate VC in GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seano, G., Jain, R.K.: Vessel co-option in glioblastoma: emerging insights and opportunities. Angiogenesis 23, 9–16 (2020)

    Article  PubMed  Google Scholar 

  2. Ribatti, D., Pezzella, F.: Vascular co-option and other alternative modalities of growth of tumor vasculature in glioblastoma. Front. Oncol. 12, 874554 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kuczynski, E.A., Vermeulen, P.B., Pezzella, F., Kerbel, R.S., Reynolds, A.R.: Vessel co-option in cancer. Nat. Rev. Clin. Oncol. 16, 469–493 (2019)

    Article  CAS  PubMed  Google Scholar 

  4. Kuczynski, E.A., Reynolds, A.R.: Vessel co-option and resistance to anti-angiogenic therapy. Angiogenesis 23, 55–74 (2020)

    Article  CAS  PubMed  Google Scholar 

  5. Donnem, T., et al.: Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? Cancer Med. 2, 427–436 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rada, M., Lazaris, A., Kapelanski-Lamoureux, A., Mayer, T.Z., Metrakos, P.: Tumor microenvironment conditions that favor vessel co-option in colorectal cancer liver metastases: a theoretical model. Semin. Cancer Biol. 71, 52–64 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. Kim, M.-H., van Noort, D., Sung, J.H., Park, S.: Organ-on-a-chip for studying gut-brain interaction mediated by extracellular vesicles in the gut microenvironment. Int. J. Mol. Sci. 22, 13513 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alves, A.H., et al.: The advances in glioblastoma on-a-chip for therapy approaches. Cancers 14, 869 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim, S., Kim, W., Lim, S., Jeon, J.S.: Vasculature-on-a-chip for in vitro disease models. Bioeng. (Basel, Switzerland) 4, 8 (2017)

    Google Scholar 

  10. Moses, S.R., Adorno, J.J., Palmer, A.F., Song, J.W.: Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro. Am. J. Physiol. Physiol. 320, C92–C105 (2020)

    Google Scholar 

  11. Aazmi, A., et al.: Engineered vasculature for organ-on-a-chip systems. Engineering 9, 131–147 (2022)

    Article  Google Scholar 

  12. Pollet, A.M.A.O., den Toonder, J.M.J.: Recapitulating the vasculature using organ-on-chip technology. Bioengineering 7, 17 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lim, J., Ching, H., Yoon, J.-K., Jeon, N.L., Kim, Y.: Microvascularized tumor organoids-on-chips: advancing preclinical drug screening with pathophysiological relevance. Nano Converg. 8, 12 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seo, S., et al.: An engineered neurovascular unit for modeling neuroinflammation. Biofabrication 13, 35039 (2021)

    Article  CAS  Google Scholar 

  15. Kwak, T.J., Lee, E.: In vitro modeling of solid tumor interactions with perfused blood vessels. Sci. Rep. 10, 20142 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seo, S., Nah, S.-Y., Lee, K., Choi, N., Kim, H.N.: Triculture model of in vitro bbb and its application to study BBB-associated chemosensitivity and drug delivery in glioblastoma. Adv. Funct. Mater. 32, 2106860 (2022)

    Article  CAS  Google Scholar 

  17. Bernstein, J.J., Woodard, C.A.: Glioblastoma cells do not intravasate into blood vessels. Neurosurgery 36, 124–32 (1995). ((discussion 132))

    Article  CAS  PubMed  Google Scholar 

  18. Seo, Y.J., Cho, W.H., Kang, D.W., Cha, S.H.: Extraneural metastasis of glioblastoma multiforme presenting as an unusual neck mass. J. Korean Neurosurg. Soc. 51, 147–150 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Elena, A., et al.: Extraneural metastases in glioblastoma patients: two cases with YKL-40-positive glioblastomas and a meta-analysis of the literature. Neurosurg. Rev. 39, 37–46 (2016)

    Article  Google Scholar 

  20. Kim, J., Kim, S., Uddin, S., Lee, S.S., Park, S.: Microfabricated stretching devices for studying the effects of tensile stress on cells and tissues. BioChip J. (2022). https://doi.org/10.1007/s13206-022-00073-0

    Article  PubMed  PubMed Central  Google Scholar 

  21. Son, J., Kim, H.-H., Lee, J.-H., Jeong, W.-I., Park, J.-K.: Assembly and disassembly of the micropatterned collagen sheets containing cells for location-based cellular function analysis. BioChip J. 15, 77–89 (2021)

    Article  CAS  Google Scholar 

  22. Han, S., et al.: 3D bioprinted vascularized tumour for drug testing. Int. J. Mol. Sci. 21, 2993 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Delannoy, E., et al.: Multi-layered human blood vessels-on-chip design using double viscous finger patterning. Biomedicines 10, 797 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, Y.I., Shuler, M.L.: UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems. Lab Chip 18, 2563–2574 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sung, J.H., Kam, C., Shuler, M.L.: A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip. Lab Chip 10, 446–455 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. Kwak, B.S., et al.: Microfluidic skin chip with vasculature for recapitulating the immune response of the skin tissue. Biotechnol. Bioeng. 117, 1853–1863 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. Lee, D.W., Choi, N., Sung, J.H.: A microfluidic chip with gravity-induced unidirectional flow for perfusion cell culture. Biotechnol. Prog. 35, e2701 (2019)

    Article  PubMed  Google Scholar 

  28. Lee, Y., et al.: Gut-kidney axis on chip for studying effects of antibiotics on risk of hemolytic uremic syndrome by shiga toxin-producing Escherichia coli. Toxins 13, 775 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Norton, K.-A., Popel, A.S.: Effects of endothelial cell proliferation and migration rates in a computational model of sprouting angiogenesis. Sci. Rep. 6, 36992 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ko, J., et al.: Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis. Lab Chip 19, 2822–2833 (2019)

    Article  CAS  PubMed  Google Scholar 

  31. Bae, J., Han, S., Park, S.: Recent advances in 3D bioprinted tumor microenvironment. BioChip J. 14, 137–147 (2020)

    Article  CAS  Google Scholar 

  32. Beck, B., et al.: A vascular niche and a VEGF–Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478, 399–403 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. Kumar, S., et al.: Intra-tumoral metabolic zonation and resultant phenotypic diversification are dictated by blood vessel proximity. Cell Metab. 30, 201-211.e6 (2019)

    Article  CAS  PubMed  Google Scholar 

  34. Sarveswaran, K., et al.: Synthetic capillaries to control microscopic blood flow. Sci. Rep. 6, 21885 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rouwkema, J., Koopman, B.F.J.M., Van Blitterswijk, C.A., Dhert, W.J.A., Malda, J.: Supply of nutrients to cells in engineered tissues. Biotechnol. Genet. Eng. Rev. 26, 163–178 (2009)

    Article  Google Scholar 

  36. Leung, E., et al.: Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway. Oncogene 36, 2680–2692 (2017)

    Article  CAS  PubMed  Google Scholar 

  37. Xiao, Y., et al.: Ex vivo dynamics of human glioblastoma cells in a microvasculature-on-a-chip system correlates with tumor heterogeneity and subtypes. Adv. Sci. 6, 1801531 (2019)

    Article  Google Scholar 

  38. Cuddapah, V.A., Robel, S., Watkins, S., Sontheimer, H.: A neurocentric perspective on glioma invasion. Nat. Rev. Neurosci. 15, 455–465 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frentzas, S., et al.: Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat. Med. 22, 1294–1302 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leenders, W.P.J., et al.: Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin. Cancer Res. 10, 6222–6230 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. Kienast, Y., et al.: Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16, 116–122 (2010)

    Article  CAS  PubMed  Google Scholar 

  42. Valiente, M., et al.: Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156, 1002–1016 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jeong, H.-S., et al.: Investigation of the lack of angiogenesis in the formation of lymph node metastases. J. Natl. Cancer Inst. 107, djv155 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pereira, E.R., et al.: Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359, 1403–1407 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (Industrial Strategic Technology Development Program-Development of disease models based on 3D microenvironmental platforms mimicking multiple organs and evaluation of drug efficacy) (20008413) funded by the MOTIE (Ministry of Trade, Industry, and Energy) in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungsu Park.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 320 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, J., Kim, MH., Han, S. et al. Development of Tumor-Vasculature Interaction on Chip Mimicking Vessel Co-Option of Glioblastoma. BioChip J 17, 77–84 (2023). https://doi.org/10.1007/s13206-022-00090-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-022-00090-z

Keywords

Navigation