Skip to main content
Log in

Surface Functionalization and Bonding of Chemically Inert Parylene Microfluidics Using Parylene-A Adhesive Layer

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Parylene microfluidic systems have been utilized for applications requiring properties such as high chemical resistance, high internal pressure, high mechanical strength, and small heat loss. However, they have not been widely used compared to PDMS microfluidics because the device fabrication is relatively complex and surface functionalization is difficult. In this work, we introduce a simple and economic fabrication method for parylene microfluidic devices by molding and bonding using thin-film parylene A as an adhesive layer. The amine functional group from parylene A leverages as a covalent bonding source in between two parylene layers while providing the capability of functionalization of the internal surface of parylene microfluidic channel that is highly resistant to harsh chemicals at the same time. This new approach demonstrates the ability of high bonding strength (~ 4 Mpa) and eliminates the use of an additional adhesive polymer layer, which often fails to provide sufficient chemical resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jähnisch, K., Hessel, V., Löwe, H., Baerns, M.: Chemistry in microstructured reactors. Angew. Chem. Int. Ed. 43(4), 406–446 (2004)

    Article  Google Scholar 

  2. Alrifaiy, A., Lindahl, O.A., Ramser, K.: Polymer-based microfluidic devices for pharmacy, biology and tissue engineering. Polymers 4(3), 1349–1398 (2012)

    Article  CAS  Google Scholar 

  3. Koch, M., Evans, A., Brunnschweiler, A., Evans, A., Brunnschweiler, A.: Microfluidic technology and applications. Research Studies Press Baldock. (2000)

  4. Becker, H., Locascio, L.E.: Polymer microfluidic devices. Talanta 56(2), 267–287 (2002)

    Article  CAS  Google Scholar 

  5. Omasu, F., Nakano, Y., Ichiki, T.: Measurement of the electrophoretic mobility of sheep erythrocytes using microcapillary chips. Electrophoresis 26(6), 1163–1167 (2005)

    Article  CAS  Google Scholar 

  6. Kim, J.-O., Kim, H., Ko, D.-H., Min, K.-I., Park, S.-Y., Kim, D.-P.: A monolithic and flexible fluoropolymer film microreactor for organic synthesis applications. Lab Chip 14(21), 4270–4276 (2014)

    Article  CAS  Google Scholar 

  7. Szymborski, T., Jankowski, P., Garstecki, P.: Teflon microreactors for organic syntheses. Sens. Actuators, B Chem. 255, 2274–2281 (2018)

    Article  CAS  Google Scholar 

  8. Kim, B.J., Meng, E.: Micromachining of Parylene C for bioMEMS. Polym. Adv. Technol. 27(5), 564–576 (2016)

    Article  CAS  Google Scholar 

  9. Kim, J., You, J.B., Nam, S.M., Seo, S., Im, S.G., Lee, W.: Rollable microfluidic systems with microscale bending radius and tuning of device function with reconfigurable 3D channel geometry. ACS Appl. Mater. Interfaces. 9(12), 11156–11166 (2017)

    Article  CAS  Google Scholar 

  10. Jung, B.-J., Kim, J., Kim, J.-A., Jang, H., Seo, S., Lee, W.: PDMS-parylene hybrid, flexible microfluidics for real-time modulation of 3D helical inertial microfluidics. Micromachines. 9(6), 255 (2018)

    Article  Google Scholar 

  11. Fukuda, T., Kohara, N., Onogi, Y., Inagaki, H.: Swelling of poly (glycidyl methacrylate) gel particles by organic solvents. J. Appl. Polym. Sci. 43(12), 2201–2205 (1991)

    Article  CAS  Google Scholar 

  12. Satheeshkumar, C., Jung, B.J., Jang, H., Lee, W., Seo, M.: Surface modification of parylene c film via buchwald-hartwig amination for organic solvent-compatible and flexible microfluidic channel bonding. Macromol. Rapid Commun. 42(8), 2000520 (2021)

    Article  CAS  Google Scholar 

  13. Choi, Y.-H., Lee, G.-Y., Ko, H., Chang, Y.W., Kang, M.-J., Pyun, J.-C.: Development of SPR biosensor for the detection of human hepatitis B virus using plasma-treated parylene-N film. Biosens. Bioelectron. 56, 286–294 (2014)

    Article  CAS  Google Scholar 

  14. Choi, Y.-H., Ko, H., Lee, G.-Y., Chang, S.-Y., Chang, Y.W., Kang, M.-J., Pyun, J.-C.: Development of a sensitive SPR biosensor for C-reactive protein (CRP) using plasma-treated parylene-N film. Sens. Actuators, B Chem. 207, 133–138 (2015)

    Article  CAS  Google Scholar 

  15. Elzein, T., Bistac, S., Brogly, M., Schultz, J.: In PM‐IRRAS spectroscopy for the characterization of polymer nanofilms: chains conformation, anisotropy and crystallinity, Macromolecular Symposia, Wiley Online Library: pp 181–190. (2004)

  16. Dargahi, M., Omanovic, S.: A comparative PM-IRRAS and ellipsometry study of the adsorptive behaviour of bovine serum albumin on a gold surface. Colloids Surf., B 116, 383–388 (2014)

    Article  CAS  Google Scholar 

  17. You, J.B., Min, K.-I., Lee, B., Kim, D.-P., Im, S.G.: A doubly cross-linked nano-adhesive for the reliable sealing of flexible microfluidic devices. Lab Chip 13(7), 1266–1272 (2013)

    Article  CAS  Google Scholar 

  18. Noh, H.-S., Huangb, Y., Hesketha, P.J.: Parylene micromolding, a rapid and low-cost fabrication method for parylene microchannel. Sens. Actuators, B Chem. 102(1), 78–85 (2004)

    Article  CAS  Google Scholar 

  19. Noh, H.-S., Choi, Y., Wu, C.-F., Hesketh, P. J., Allen, M. G.: In Rapid, low-cost fabrication of parylene microchannels for microfluidic applications, TRANSDUCERS'03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No. 03TH8664), IEEE: pp 798–801. (2003)

  20. Noh, H.-S., Moon, K.-S., Cannon, A., Hesketh, P.J., Wong, C.: Wafer bonding using microwave heating of parylene intermediate layers. J. Micromech. Microeng. 14(4), 625 (2004)

    Article  CAS  Google Scholar 

  21. Mohammed, Z.A.S., Olimpo, M., Poenar, D., Aditya, S.: Smoothening of scalloped DRIE trench walls. Mater. Sci. Semicond. Process. 63, 83–89 (2017)

    Article  Google Scholar 

  22. Waters, L.J., Finch, C.V., Bhuiyan, A.M.H., Hemming, K., Mitchell, J.C.: Effect of plasma surface treatment of poly (dimethylsiloxane) on the permeation of pharmaceutical compounds. J. Pharm. Anal. 7(5), 338–342 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIT) (NRF-2021R1A2C1005807).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Chul Pyun or Wonhee Lee.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, BJ., Jang, H., Lee, GY. et al. Surface Functionalization and Bonding of Chemically Inert Parylene Microfluidics Using Parylene-A Adhesive Layer. BioChip J 16, 168–174 (2022). https://doi.org/10.1007/s13206-022-00050-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-022-00050-7

Keywords

Navigation