Skip to main content
Log in

Development of reversible bonding for microfluidic applications

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Reversible bonding that allows repeating assembly and disassembly of microfluidic devices is very useful for a number of applications such as surface functionalization, complex cell patterning, and other biological analysis. However, reversible microfluidic devices fabricated with the current standard procedures can only be used for low-pressure applications. In this paper, we describe and characterize a reliable, flexible, and reversible bonding technique of PDMS–PDMS (Poly-dimethyl siloxane) using an oxygen plasma treatment. Effects of control parameters, such as the thickness of the PDMS layer, the duration and power of the plasma treatment, the duration and temperature of the thermal treatment on the quality of the obtained devices are investigated. An optimal set of control parameters enabling the obtained devices to work at high flow rates and pressures (500 µL/min and 148 kPa) has been determined. Furthermore, the disassembly/assembly process of the device can be repeated up to four times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anwar K, Han T, Kim SM (2011) Reversible sealing techniques for microdevice applications. Sens Actuators B Chem 153:301–311. doi:10.1016/j.snb.2010.11.002

    Article  Google Scholar 

  • Bhattacharya S, Datta A, Berg JM, Gangopadhyay S (2005) Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Syst 14:590–597

    Article  Google Scholar 

  • Cai D, Neyer A (2010) Cost-effective and reliable sealing method for PDMS (PolyDiMethylSiloxane)-based microfluidic devices with various substrates. Microfluid Nanofluidics 9:855–864. doi:10.1007/s10404-010-0596-1

    Article  Google Scholar 

  • Chen X, Murawski A, Kuang G et al (2006) Sample preparation for MALDI mass spectrometry using an elastomeric device reversibly sealed on the MALDI target. Anal Chem 78:6160–6168. doi:10.1021/ac060286b

    Article  Google Scholar 

  • Chen Q, Li G, Nie Y et al (2013) Investigation and improvement of reversible microfluidic devices based on glass–PDMS–glass sandwich configuration. Microfluid Nanofluidics 16:83–90. doi:10.1007/s10404-013-1222-9

    Article  Google Scholar 

  • Chong SC, Xie L, Yobas L, et al (2005) Disposable polydimethylsioxane package for “bio-microfluidic system.” In: Electron components technol conference 2005 proceedings 55th pp 617–621. doi: 10.1109/ECTC.2005.1441333

  • Chung S, Park J, Chung C et al (2004) Multi-height micro structures in poly(dimethyl siloxane) lab-on-a-chip. Microsyst Technol 10:81–88. doi:10.1007/s00542-003-0301-3

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984. doi:10.1021/ac980656z

    Article  Google Scholar 

  • Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J Micromech Microeng 18:067001. doi:10.1088/0960-1317/18/6/067001

    Article  Google Scholar 

  • Fürjes P, Holczer EG, Tóth E et al (2014) PDMS microfluidics developed for polymer based photonic biosensors. Microsyst Technol. doi:10.1007/s00542-014-2130-y

    Google Scholar 

  • Geng Z, Zhang L, Ju Y, et al (2011) Fabrication of reusable whole PDMS biochip for mesenchymal stem cell separation and enrichment. In: 2011 6th IEEE international conference nano/micro engineered and molecular systems IEEE, pp 5–8

  • Khademhosseini A, Yeh J, Eng G et al (2005) Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays. Lab Chip 5:1380–1386. doi:10.1039/b508096g

    Article  Google Scholar 

  • Le Berre M, Crozatier C, Velve Casquillas G, Chen Y (2006) Reversible assembling of microfluidic devices by aspiration. Microelectron Eng 83:1284–1287. doi:10.1016/j.mee.2006.01.257

    Article  Google Scholar 

  • McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499

    Article  Google Scholar 

  • Mcdonald JC, Duffy DC, Anderson JR, Chiu DT (2000) Review general fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21:27–40

    Article  Google Scholar 

  • Neethirajan S, Kobayashi I, Nakajima M et al (2011) Microfluidics for food, agriculture and biosystems industries. Lab Chip 11:1574–1586. doi:10.1039/c0lc00230e

    Article  Google Scholar 

  • Oh KW, Lee K, Ahn B, Furlani EP (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12:515–545. doi:10.1039/c2lc20799k

    Article  Google Scholar 

  • Rafat M, Raad DR, Rowat AC, Auguste DT (2009) Fabrication of reversibly adhesive fluidic devices using magnetism. Lab Chip 9:3016–3019. doi:10.1039/b907957b

    Article  Google Scholar 

  • Ramadan Q, Samper V, Poenar D, Yu C (2006) Magnetic-based microfluidic platform for biomolecular separation. Biomed Microdevices 8:151–158. doi:10.1007/s10544-006-7710-x

    Article  Google Scholar 

  • Rasponi M, Piraino F, Sadr N et al (2010) Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation. Microfluid Nanofluidics 10:1097–1107. doi:10.1007/s10404-010-0738-5

    Article  Google Scholar 

  • Stone HA, Stroock HD, Ajdari A (2004) Engineering flows in small devices. Annu Rev Fluid Mech 36:381–411. doi:10.1146/annurev.fluid.36.050802.122124

    Article  Google Scholar 

  • Sui G, Lee C-C, Kamei K-I et al (2007) A microfluidic platform for sequential ligand labeling and cell binding analysis. Biomed Microdevices 9:301–305. doi:10.1007/s10544-006-9033-3

    Article  Google Scholar 

  • Vézy C, Haddour N, Dempsey NM et al (2011) Simple method for reversible bonding of a polydimethylsiloxane microchannel to a variety of substrates. Micro Nano Lett 6:871. doi:10.1049/mnl.2011.0492

    Article  Google Scholar 

  • Wittig JH, Ryan AF, Asbeck PM (2005) A reusable microfluidic plate with alternate-choice architecture for assessing growth preference in tissue culture. J Neurosci Methods 144:79–89. doi:10.1016/j.jneumeth.2004.10.010

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the French RENATECH network and Vietnamese Overseas Scholarship Program (Project-322). The authors wish to thank technicians of the clean room of the ‘Centrale de Technologie Universitaire (MINERVE-CTU)’ for their valuable help during the experimental tests. A special thank is also given to their colleague Mehdi Ammar for the AFM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. H. N. Dinh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, T.H.N., Cao, H.H., Hamdi, F.S. et al. Development of reversible bonding for microfluidic applications. Microfluid Nanofluid 19, 751–756 (2015). https://doi.org/10.1007/s10404-015-1599-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1599-8

Keywords

Navigation