Skip to main content
Log in

Osteogenesis and Chondrogenesis of Primary Rabbit Periosteal Cells under Non-uniform 2-Axial Tensile Strain

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Periosteal cells are the major cell sources of skeletal progenitors for fracture callus. In order to promote bone repair and cartilage formation, besides the application of exogenous growth factors, physical stimulation is an alternative approach to guide cell differentiation. Investigation of appropriate conditions is essential for forming bone and cartilage. In this work, a membrane-type micro-system was developed to provide cell culture environment and cell stretching stimulation during culture course. Circular and oval culture wells were designed to respectively generate uniform and non-uniform 2-axial tensile strain for stretching primary rabbit periosteal cells. Cell orientation and differentiation were studied after cycling stretching for 2 days. The cells aligned to the stretching axis with high tensile strain in the oval culture wells; while the cells expressed random orientation in the circular culture wells. Different responses were significantly shown when the cells were respectively stimulated by uniform and non-uniform 2-axial tensile strains. On the other hand, osteogenic differentiation was shown when the cells were under either uniform or non-uniform 2-axial tensile strain. However, only non-uniform 2-axial tensile strain could induce mature osteoblasts. In addition, the result revealed chondrocytes could be differentiated only under a large and nearly single dimensional tensile strain. In summary, differentiation of the periosteal cells is highly influenced by 2-dimensional distribution of the tensile strain. This work provides some in-sights of the control of axial tensile strain for periosteal cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wang, T., Zhang, X. & Bikle, D.D. Osteogenic differentiation of periosteal cells during fracture healing. J. Cell. Physiol. 232, 913–921 (2016).

    Article  Google Scholar 

  2. Samee, M., Kasugai, S., Kondo, H., Ohya, K., Shimokawa, H. & Kuroda, S. Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation. J. Pharmacol. Sci. (Amsterdam, Neth.) 108, 18–31 (2008).

    CAS  Google Scholar 

  3. Nakahara, H., Dennis, J.E., Bruder, S.P., Haynesworth, S.E., Lennon, D.P. & Caplan, A.I. In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp. Cell Res. 195, 492–503 (1991).

    Article  CAS  Google Scholar 

  4. Breibart, A.S., Grande, D.A., Kessler, R., Ryaby, J.T., Fitzsimmons, R.J. & Grant, R.T. Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast. Reconstr. Surg. 101, 567–574 (1998).

    Article  Google Scholar 

  5. Nakahara, H., Goldberg, V.M. & Caplan, A.I. Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J. Orthop. Res. 9, 465–476 (1991).

    Article  CAS  Google Scholar 

  6. Hu, K. & Olsen, B.R. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 91, 30–38 (2016).

    Article  CAS  Google Scholar 

  7. Khan, Y. & Laurencin, C.T. Fracture repair with ultrasound: Clinical and cell-based evaluation. J. Bone Jt. Surg., Am. Vol. 90, 138–144 (2008).

    Article  Google Scholar 

  8. Leung, K.S., Cheung, W.H., Zhang, C., Lee, K.M. & Lo, H.K. Low intensity pulsed ultrasound stimulates osteogenic activity of human periosteal cells. Clin. Orthop. Relat. Res. 418, 253–259 (2004).

    Article  Google Scholar 

  9. Lee, J.M., Kim, M.G., Byun, J.H., Kim, G.C., Ro, J.H., Hwang, D.S., Choi, B.B., Park, G.C. & Kim, U.K. The effect of biomechanical stimulation on osteoblast differentiation of human jaw periosteum-derived stem cells. Maxillofac. Plast. Reconstr. Surg. 39, 7 (2017).

    Article  Google Scholar 

  10. Matthew, B.G., Wee, N.K.Y., Widjaja, V.N., Price, J.S., Kalajzic, I. & Windahl, S.H. alpha-SMA osteoprogenitor cells contribute to the increase in osteoblast numbers in response to mechanical loading. Calcif. Tissue Int. 106, 208–217 (2020).

    Article  Google Scholar 

  11. Kanno, T., Takahashi, T., Ariyoshi, W., Tsujisawa, T., Haga, M. & Nishihara, T. Tensile mechanical strain up-regulates Runx2 and osteogenic factor expression in human periosteal cells: implications for distraction osteogenesis. J. Oral Maxillofac. Surg. 63, 499–504 (2005).

    Article  Google Scholar 

  12. Shimizu, N., Ozawa, Y., Yamaguchi, M., Goseki, T., Ohzeki, K. & Abiko, Y. Induction of COX-2 expression by mechanical tension force in human periodontal ligament cells. J. Periodontol. 69, 670–677 (1998).

    Article  CAS  Google Scholar 

  13. Sun, Z. & Tee, B.C. Molecular variations related to the regional differences in periosteal growth at the mandibular ramus. Bone Biol. 294, 79–87 (2011).

    CAS  Google Scholar 

  14. Suzuki, N., Yoshimura, Y., Deyama, Y., Suzuki, K. & Kitagawa, Y. Mechanical stress directly suppresses osteoclast differentiation in RAW264.7 cells. Int. J. Mol. Med. 21, 291–296 (2008).

    CAS  PubMed  Google Scholar 

  15. Lei, K.F. Microfluidic systems for diagnostic applications: A review. JALA 17, 330–347 (2012).

    CAS  PubMed  Google Scholar 

  16. Lei, K.F. Review on impedance detection of cellular responses in micro/nano environment. Micromachines 5, 1–12 (2014).

    Article  Google Scholar 

  17. Unger, M.C., Chou, H.P., Thorsen, T., Scherer, A. & Quake, S.R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).

    Article  CAS  Google Scholar 

  18. Thorsen, T., Maerkl, S.J. & Quake, S.R. Microfludic large-scale integration. Science 298, 580–584 (2002).

    Article  CAS  Google Scholar 

  19. Grover, W.H., Ivester, R.H.C., Jensen, E.C. & Mathies, R.A. Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab Chip 6, 623–631 (2006).

    Article  CAS  Google Scholar 

  20. Wu, C.Y., Lu, J.C., Liu, M.C. & Tung, Y.C. Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics. Lab Chip 12, 3943–3951 (2012).

    Article  CAS  Google Scholar 

  21. Liu, M.C., Shih, H.C., Wu, J.G., Weng, T.W., Wu, C.Y. & Lu, J.C. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations. Lab Chip 13, 1743–1753 (2013).

    Article  CAS  Google Scholar 

  22. Kim, Y.C., Kang, J.H., Park, S.J., Yoon, E.S. & Park, J.K. Microfluidic biomechanical device for compressive cell stimulation and lysis. Sens. Actuators, B 128, 108–116 (2007).

    Article  CAS  Google Scholar 

  23. Kim, Y.C., Park, S.J. & Park, J.K. Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device. Analyst 113, 1432–1439 (2008).

    Article  Google Scholar 

  24. Gao, X., Zhang, X., Tong, H., Lin, B. & Qin, J. A simple elastic membrane-based microfluidic for the proliferation and differentiation of mesenchymal stem cells under tensile stress. Electrophoresis 32, 3431–3436 (2011).

    Article  CAS  Google Scholar 

  25. Chiu, C.H., Liu, J.L., Chang, C.H., Lei, K.F. & Chen, A.C.Y. Investigation of osteogenic activity of primary rabbit periosteal cells stimulated by multi-axial tensile strain. Biomed. Microdevices 19, 13 (2017).

    Article  Google Scholar 

  26. Chiu, C.H., Tong, Y.W., Yeh, W.L., Lei, K.F. & Chen, A.C.Y. Self-renewal and differentiation of adipose-derived stem cells (ADSCs) stimulated by multi-axial tensile strain in a pneumatic microdevice. Micromachines 9, 607 (2018).

    Article  Google Scholar 

  27. Nakahara, H., Dennis, J.E., Bruder, S.P., Haynesworth, S.E., Lennon, D.P. & Caplan, A.I. In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp. Cell Res. 195, 492–503 (1991).

    Article  CAS  Google Scholar 

  28. Chen, Y., Pasapera, A.M., Koretsky, A.P. & Waterman, C.M. Orientation-specific responses to sustained uniaxial stretching in focal adhesion growth and turnover. Proc. Natl. Acad. Sci. U. S. A. 110, E2352–2361 (2013).

    Article  CAS  Google Scholar 

  29. Kawane, T., Qin, X., Jiang, Q., Miyazaki, T., Komori, H., Yoshida, C.A., dos Santos Matsuura-Kawata, V.K., Sakane, C., Matsuo, Y., Nagai, K., Maeno, T., Date, Y., Nishimura, R. & Komori, T. Runx2 is required for the proliferation of osteoblast progenitors and induces proliferation by regulating Fgfr2 and Egfr3. Sci. Rep. 8, 13551 (2018).

    Article  Google Scholar 

  30. Komori, T. Regulation of proliferation, differentiation and functions of osteoblasts by runx2. Int. J. Mol. Sci. 20, 1694 (2019).

    Article  CAS  Google Scholar 

  31. Lund, S.A., Giachelli, C.M. & Scatena, M. The role of osteopontin in inflammatory processes. J. Cell Commun. Signal. 3, 311–322 (2009).

    Article  Google Scholar 

  32. Zhu, Y.S., Gu, Y., Jiang, C. & Chen, L. Osteonectin regulates the extracellular matrix mineralization of osteoblasts through p38 signaling pathway. J. Cell. Physiol. 235, 2220–2231 (2020).

    Article  CAS  Google Scholar 

  33. Lefebvre, V., Huang, W., Harley, V.R., Goodfellow, P.N. & de Crombrugghe, B. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol. Cell. Biol. 17, 2336–2346 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Chang Gung Memorial Hospital, Linkou, Taiwan under the projects of CMRPG3H0691 and BMRP334.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kin Fong Lei or Alvin Chao-Yu Chen.

Additional information

Conflict of Interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, CH., Tong, YW., Yu, JF. et al. Osteogenesis and Chondrogenesis of Primary Rabbit Periosteal Cells under Non-uniform 2-Axial Tensile Strain. BioChip J 14, 438–446 (2020). https://doi.org/10.1007/s13206-020-4408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-020-4408-8

Keywords

Navigation