Skip to main content
Log in

Detection of typical indigenous gut bacteria related to kanpyo Lagenaria siceraria var. hispida powder in murine caecum and human faecal cultures

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Kanpyo (KP) is an edible dried product produced by peeling the fruit of the gourd Lagenaria siceraria var. hispida; it is used in the traditional Japanese cuisine. The health functionality of KP due to its rich dietary fibre is expected to include a possible combined effect of KP-responsive indigenous gut bacteria (KP-RIB). However, its effect on the gut microbiota is unclear. To determine the effects of the KP on the gut microbiota and their host, Institute of Cancer Research mice were fed a high-sucrose diet containing no fibre (NF) or 5% (w/w) KP for 14 days, and their caecal microbiota was analysed by 16S rRNA (V4) amplicon sequencing. Higher faecal frequency and weight and lower spleen weight and spleen tumour necrosis factor-α levels were observed in KP-fed mice than in NF-fed mice (p < 0.05). KP increased and decreased the abundance of short-chain fatty acid producer Lachnospiraceae and obesity-inflammation related Allobaculum species, respectively. In the case of human faecal cultures, stool samples from five healthy volunteers were inoculated and incubated at 37 °C for 24 h anaerobically; 3.2% (w/v) KP suppressed putrefactive compounds (indole, phenol, and ammonia). KP increased butyrate-producer Faecalibacterium, acetate/lactate-producer Bifidobacterium, and Lachnospira. Furthermore, KP cultures showed high antioxidant and RAW264.7 macrophage cell activation capacities. These results suggest that KP-RIB and KP intake may synergistically affect host health. However, further studies are required to clarify the synergistic effects of KP and KP-RIB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abdugheni R, Wang W, Wang Y, Du M, Liu F, Zhou N et al (2022) Metabolite profiling of human-originated Lachnospiraceae at the strain level. iMeta 1:e58

    Article  Google Scholar 

  • Abu-Ghazaleh N, Chia WJ, Gopalan V (2021) Intestinal microbiota and its association with colon cancer andred/processed meat consumption. J Gastroenterol Hepatol 36:75–88

    Article  CAS  PubMed  Google Scholar 

  • Bedford A, Gong J (2018) Implications of butyrate and its derivatives for gut health and animal production. Animal Nutr 4:151–159

    Article  Google Scholar 

  • Bui TPN, Mannerås-Holm L, Puschmann R, Wu H, Troise AD, Nijsse B et al (2021) Conversion of dietary inositol into propionate and acetate by commensal Anaerostipes associates with host health. Nat Commun 12:4798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Čoklo M, Maslov DR, Pavelić SK (2020) Modulation of gut microbiota in healthy rats after exposure to nutritional supplements. Gut Microbes 12:e1779002

    Article  Google Scholar 

  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563

    Article  CAS  PubMed  Google Scholar 

  • De Filippis F, Esposito A, Erolini D (2022) Outlook on next-generation probiotics from the human gut. Cell Mol Life Sci 79:76

    Article  PubMed  Google Scholar 

  • Ecklu-Mensah G, Gilbert J, Devkota S (2022) Dietary selection pressures and their impact on the gut microbiome. Cell Mol Gastroenterol Hepatol 13:7–18

    Article  CAS  PubMed  Google Scholar 

  • Forbes JD, Chen C, Knox NC, Marrie R, El-Gabalawy H, de Kievit T et al (2018) A comparative study of the gut microbiota in immune-mediated inflammatory diseases—does a common dysbiosis exist? Microbiome 6:221

    Article  PubMed  PubMed Central  Google Scholar 

  • Harada M, Kuda T, Nakamura S, Lee G, Takahashi H, Kimura B (2021) In vitro antioxidant and immunomodulation capacities of low-molecular weight-alginate-and laminaran-responsible gut indigenous bacteria. LWT-Food Sci Technol 151:112127

    Article  CAS  Google Scholar 

  • Heiman ML, Greenway FL (2016) A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol Metab 5:317–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota K, Inagaki S, Hamada RYO, Ishihara K, Miyake Y (2014) Evaluation of a rapid oral bacteria quantification system using dielectrophoresis and the impedance measurement. Biocontrol Sci 19:45–49

    Article  PubMed  Google Scholar 

  • Hu T, Wu Q, Yao Q, Jiang K, Yu J, Tang Q (2022) Short-chain fatty acid metabolism and multiple effects on cardiovascular diseases. Ageing Res Rev 81:101706

    Article  CAS  PubMed  Google Scholar 

  • Isken F, Klaus S, Osterhoff M, Pfeiffer AFH, Weickert MO (2010) Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice. J Nutr Biochem 21:278–284

    Article  CAS  PubMed  Google Scholar 

  • Kaga Y, Kuda T, Taniguchi M, Yamaguchi Y, Takenaka H, Takahashi H, Kimura B (2021) The effects of fermentation with lactic acid bacteria on the antioxidant and anti-glycation properties of edible cyanobacteria and microalgae. LWT-Food Sci Technol 135:110029

    Article  CAS  Google Scholar 

  • Kim G, Yang H, Park HR, Park C, Park YS, Lee SE (2013) Evaluation of immunoreactivity of in vitro and in vivo models against bacterial synthesised cellulose to be used as a prosthetic biomaterial. BioChip J 7:201–209

    Article  CAS  Google Scholar 

  • Kim BR, Shin J, Guevarra RB, Lee JH, Kim DW, Seol KH et al (2017) Deciphering diversity indices for a better understanding of microbial communities. J Microbiol Biotechnol 27:2089–2093

    Article  PubMed  Google Scholar 

  • Kuda T, Yokota Y, Shikano A, Takei M, Takahashi H, Kimura B (2017) Dietary and lifestyle disease indices and caecal microbiota in high-fat diet, dietary fibre free diet, or DSS induced IBD models in ICR mice. J Funct Foods 35:605–614

    Article  Google Scholar 

  • Kumar A, Sperandio V (2019) Indole signaling at the host-microbiota-pathogen interface. Mbio 10:e01031–e01039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Oh HJ, Kang M, Kim S, Ahn S, Kim MJ et al (2021) Metagenomic analysis of gut microbiome reveals a dynamic change in Alistipes onderdonkii in the preclinical model of pancreatic cancer, suppressing its proliferation. Appl Microbiol Biotechnol 105:8343–8358

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Harada M, Midorikawa Y, Yamamoto M, Nakamura A, Takahashi H, Kuda T (2022a) Effects of alginate and laminaran on the microbiota and antioxidant properties of human faecal cultures. Food Biosci 47:101763

    Article  CAS  Google Scholar 

  • Lee G, Midorikawa Y, Kuda T, Harada M, Fujita S, Takahashi H, Kimura B (2022b) In vitro antioxidant and anti-glycation properties of Sargassum horneri from golden tides on the South Korean coast and the effect on gut microbiota of mice fed a high-sucrose and low-fibre diet. J Appl Phycol 34:2211–2222

    Article  CAS  Google Scholar 

  • Li Y, Su X, Gao Y, Lv C, Gao Z, Liu Y et al (2020) The potential role of the gut microbiota in modulating renal function in experimental diabetic nephropathy murine models established in same environment. BBA- Mol Basis Dis 1866:165764

    Article  CAS  Google Scholar 

  • Liddicoat C, Sydnor H, Cando-Dumancela C, Dresken R, Liu J, Gellie NJC et al (2020) Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci Total Environ 701:134684

    Article  CAS  PubMed  Google Scholar 

  • Lowry D (2005) The Connoisseur’s Guide to Sushi. Harvard Common Press, Boston, pp 17–28

    Google Scholar 

  • Mayengbam S, Lambert JE, Parnell JA, Tunnicliffe JM, Nicolucci AC, Han J et al (2019) Impact of dietary fiber supplementation on modulating microbiota–host–metabolic axes in obesity. J Nutr Biochem 64:228–236

    Article  CAS  PubMed  Google Scholar 

  • Nagpal R, Wang S, Woods LCS, Seshie O, Chung ST, Shively CA et al (2018) Comparative microbiome signatures and short-chain fatty acids in mouse, rat, non-human primate, and human feces. Front Microbiol 9:2897

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakata T, Kyoui D, Takahashi H, Kimura B, Kuda T (2017) Inhibitory effects of soybean oligosaccharides and water-soluble soybean fibre on formation of putrefactive compounds from soy protein by gut microbiota. Int J Biol Macromol 97:173–180

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TLA, Vieira-Silva S, Liston A, Raes J (2015) How informative is the mouse for human gut microbiota research? Dis Model Mech 8:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice TA, Bielecka AA, Nguyen MT, Rosen CE, Song D, Sonnert ND et al (2022) Interspecies commensal interactions have nonlinear impacts on host immunity. Cell Host Microbe 30:988-1002.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rienzi SCD, Britton RA (2022) Adaptation of the gut microbiota to modern dietary sugars and sweeteners. Adv Nutr 11:616–629

    Google Scholar 

  • Ropan SM, Rajeswari VD, Kalpana VN, Elango G (2016) Biotechnology and pharmacological evaluation of Indian vegetable crop Lagenaria siceraria: an overview. Appl Microbiol Biotechnol 100:1153–1162

    Article  Google Scholar 

  • Sannoumaru Y, Shimizu J, Nakamura K, Hayakawa T, Takata T, Innnami S (1996) Effects of semi-purified dietary fibers isolated from Lagenaria siceraria, Raphanus sativus and Lentinus edodes on fecal steroid excretions in rats. J Nutr Sci Vitaminol 42:91–110

    Article  Google Scholar 

  • Seethaler B, Nguyen NK, Basrai M, Kiechle M, Walter J, Delzenne NM, Bischoff SC (2022) Short-chain fatty acids are key mediators of the favorable effects of the Mediterranean diet on intestinal barrier integrity: data from the randomised controlled LIBRE trial. Am J Clin Nutr 116:928–942

    Article  PubMed  Google Scholar 

  • Shen J, Guo H, Liu S, Jin W, Zhng Z, Zhang Y et al (2023) Aberrant branched-chain amino acid accumulation along the microbiota–gut–brain axis: Crucial targets affecting the occurrence and treatment of ischaemic stroke. Br J Pharmacol 180:347–368

    Article  CAS  PubMed  Google Scholar 

  • Shikano A, Kuda T, Shibayama J, Toyama A, Ishida Y, Takahashi H, Kimura B (2019) Effects of Lactobacillus plantarum Uruma-SU4 fermented green loofah on plasma lipid levels and gut microbiome of high-fat diet fed mice. Food Res Int 121:817–824

    Article  CAS  PubMed  Google Scholar 

  • Sinclair L, Osman OA, Bertilsson S, Eiler A (2015) Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS ONE 10:e0116955

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorbara MT, Littmann ER, Fontana E, Moody TU, Kohout CE, Gjonbalaj M et al (2020) Functional and genomic variation between human-derived isolates of Lachnospiraceae reveals inter-and intra-species diversity. Cell Host Microbe 28:134–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takei N, Kuda T, Handa N, Fujita S, Takahashi H, Kimura B (2022) Detection and isolation of typical gut indigenous bacteria in ICR mice fed wheat bran and wheat straw fibre. Food Chem Mol Sci 4:100071

    Article  CAS  Google Scholar 

  • Tawtep S, Fukiya J, Lee M, Hagio Y, Ogura T, Hayashi A, Yokota A (2017) Isolation of six novel 7-oxo- or urso-type secondary bile acid-producing bacteria from rat cecal contents. J Biosci Bioeng 124:514–522

    Article  Google Scholar 

  • Turroni F, Milani C, Ventura M, van Sinderen D (2022) The human gut microbiota during the initial stages of life: insights from bifidobacteria. Curr Opin Biotechnol 73:81–87

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Wu W, Jiang X, Xia J, Lv L, Zhuge A et al (2022) Multi-omics analysis reveals the protection of gasdermin D in concanavalin A-induced autoimmune hepatitis. Microbio Spectrum 10:01717–01722

    Google Scholar 

  • Xia Y, Kuda T, Nakamura S, Yamamoto M, Takahashi H, Kimura B (2022a) Effects of soy protein and β-conglycinin on microbiota and in vitro antioxidant and immunomodulatory capacities of human faecal cultures. Food Hydrocolloids 127:107516

    Article  CAS  Google Scholar 

  • Xia Y, Lee G, Yamamoto M, Takahashi H, Kuda T (2022b) Detection of indigenous gut bacteria related to red chilli pepper (Capsicum annuum) in murine caecum and human faecal cultures. Mol Biol Rep 49:10239–10250

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Marques FZ (2022) How dietary fibre, acting via the gut microbiome, lowers blood pressure. Curr Hypertens Rep 24:509–521

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu T, Wu X, Liu J, Sun J, Wang X, Fan G et al (2022) The regulatory roles of dietary fibers on host health via gut microbiota-derived short-chain fatty acids. Curr Opin Pharmacol 62:36–42

    Article  CAS  PubMed  Google Scholar 

  • Ye S, Shah BR, Li J, Liang H, Zhan F, Geng F, Li B (2022) A critical review on interplay between dietary fibers and gut microbiota. Trends Food Sci Technol 124:237–249

    Article  CAS  Google Scholar 

  • Zhang S, Yang J, Henning SM, Lee R, Hsu M, Grojean E et al (2017) Dietary pomegranate extract and inulin affect gut microbiome differentially in mice fed an obesogenic diet. Anaerobe 48:184–193

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Lyu W, Ren Y, Li X, Zhao S, Yang H, Xiao Y (2021) Allobaculum involves in the modulation of intestinal ANGPTLT4 expression in mice treated by high-fat diet. Front Nutr 8:690138

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MY and HO: conceptualisation, methodology, validation, formal analysis, investigation, resources, data curation, writing—original draft, and visualisation. TK: conceptualisation, methodology, validation, formal analysis, resources, data curation, writing—review and editing, visualisation, supervision, and project administration. YX and AN: conceptualisation, methodology, validation, formal analysis, investigation, resources, data curation, writing—original draft, and visualisation. HT, JI, and ST: conceptualisation, methodology, and supervision.

Corresponding author

Correspondence to Takashi Kuda.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Ethical approval

This study was approved by the Animal Experiment Committee of the Tokyo University of Marine Science and Technology (Approval No. R3-1), and the Committee for Research Involving Human Subjects of the Tokyo University of Marine Science and Technology approved the study protocol (Approval No. R03-001).

Informed consent

All volunteers provided written informed consent before participating in the study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, M., Ogura, H., Kuda, T. et al. Detection of typical indigenous gut bacteria related to kanpyo Lagenaria siceraria var. hispida powder in murine caecum and human faecal cultures. 3 Biotech 14, 118 (2024). https://doi.org/10.1007/s13205-024-03960-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-024-03960-5

Keywords

Navigation