Skip to main content

Advertisement

Log in

Characterization of Sclerotium rolfsii causing foot rot: a severe threat of betel vine cultivation in Bangladesh

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The development of the foot rot disease caused by the fungus Sclerotium rolfsii is one of the primary variables endangering betel vine production in Bangladesh. Consequently, with the ultimate objective of finding efficient preventive and control strategies for this infamous phytopathogen, the current study was undertaken for comprehensive population structure analysis, exploration of physiological features and incidence patterns of pathogenic S. rolfsii isolates. We discovered 22 S. rolfsii isolates from nine northern districts of Bangladesh. Mohanpur (51.90%), Bagmara (54.09%), and Durgapur (49.45%) upazilas in the Rajshahi district had the more severe occurrences of foot rot disease, while Chapainawabganj (18.89%) had the least number of cases. The isolates differed substantially in terms of morphology and growth rate. By employing the UPGMA algorithm to analyze the combined morphological data from 22 S. rolfsii isolates, these isolates were divided into six different groups with a 62% similarity level. Somatic incompatibility was also found in some isolates. The RAPD-4 primer confirmed 100% polymorphism among these isolates, and these genetic variations were further validated by molecular analysis. The results of the morphological and molecular analysis revealed that there was significant variation among the S. rolfsii isolates. Finally, a comprehensive characterization of S. rolfsii would allow for a suitable management strategy for betel vine’s deadly foot rot disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

References

  • Abbasi S, Safaie N, Shams-Bakhsh M, Shahbazi S (2016) Biocontrol activities of gamma induced mutants of Trichoderma harzianum against some soil-borne fungal pathogens and their DNA fingerprinting. Iran J Biotechnol 14(4):260–269

    Article  PubMed  PubMed Central  Google Scholar 

  • Banakar SN, Sanath VBK, Thejesha AG (2017) Morphological and cultural studies of Sclerotium rolfsii Sacc. causing foot rot disease of tomato. Int J Curr Microbiol App Sci 6(3):1146–1153

    Article  Google Scholar 

  • Bernardo RJ, Itoiz R (2004) Evaluation of the discriminance capacity of RAPD, isoenzymes and morphologic markers in apple (Malus x domestica Borkh.) and the congruence among classifications. Genet Resour Crop Evol 51:153–160

    Article  Google Scholar 

  • Dasgupta B, Sen C (1999) Assessment of Phytopahthora root rot of betel vine and its management using chemicals. Indian J Mycol Plant Pathol 29:91–95

    Google Scholar 

  • Flieger M, Kantorová M, Benešová T et al (2003) Kinetics of soluble glucan production by Claviceps viridis. Folia Microbiol 48:633–638

    Article  CAS  Google Scholar 

  • Harlton CE, Levesque CA, Punja ZK (1995) Genetic diversity in Sclerotium (Athelia) rolfsii and related species. Phytopathology 85:1269–1281

    Article  Google Scholar 

  • Jahan A, Islam MR, Rahman MM, Rashid MH, Adan MJ (2016) Investigation on foot and root rot of betel vine (Piper betel L.) in Kushtia district of Bangladesh. JBAR 07(01):590–599

    Google Scholar 

  • Jebaraj MD, Aiyanathan KEA, Nakkeeran S (2017) Virulence and genetic diversity of Sclerotium rolfsii Sacc., infecting groundnut using nuclear (RAPD and ISSR) markers. J Environ Biol. 38: 147–159. https://doi.org/10.22438/jeb/38/1/ms-274

  • Karim MM, Rahman MME, Islam MN et al (2019) Occurrence of stem rot disease of Hylocereus undatus in Bangladesh. Indian Phytopathol 72:545–549. https://doi.org/10.1007/s42360-019-00166-1

    Article  Google Scholar 

  • Khatri K, Kunwar S, Barocco RL, Dufault NS (2017) Monitoring fungicide sensitivity levels and mycelial compatibility groupings of Sclerotium rolfsii isolates from Florida peanut fields. Peanut Sci 44:83–92. https://doi.org/10.3146/PS17-7.1

    Article  Google Scholar 

  • Kishore GK, Pande S, Rao JN et al (2005) Pseudomonas aeruginosa inhibits the plant cell wall degrading enzymes of Sclerotium rolfsii and reduces the severity of groundnut stem rot. Eur J Plant Pathol 113:315–320. https://doi.org/10.1007/s10658-005-0295-z

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics. 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Mahadevakumar S, Tejaswini GS, Janardhana GR, Vandana Y (2015) First report of Sclerotium rolfsii causing southern blight and leaf spot of common bean (Phaseolus vulgaris) in India. Plant Dis 99:1280

    Article  Google Scholar 

  • Mahfuza EJ, Sayem SM, Hassan MF (2020) Trend of betel leaf production in Bangladesh: prospects and challenges. Res Agric Livest Fish 7(2):209–223

    Article  Google Scholar 

  • Masud MZ, Islam MR, Imtiaz A et al (2020) Morphology, prevalence and pathogenicity of fungi associated with diseased betel vine (Piper betle L.) in Bangladesh. Eur J Biol Biotechnol. 1(6): 1–5. https://doi.org/10.24018/ejbio.2020.1.6.124.

  • Monazzah M, Rabiei Z, Enferadi ST (2018) The effect of oxalic acid, the pathogenicity factor of Sclerotinia Sclerotiorum on the two susceptible and moderately resistant lines of sunflower. Iran J Biotechnol. 16: e1832. https://doi.org/10.21859/ijb.1832.

  • Mridha MAU, Alamgir SM (1989) Prevalence of sclerotial wilt of Betelvine (Piper betle L.) caused by Sclerotium rolfsii. Bangladesh J Plant Pathol 5(1&2):107–108

    Google Scholar 

  • Muthukumar A, Muthukumar A (2013) Occurrence, virulence, inoculum density and plant age of Sclerotium rolfsii Sacc. causing collar rot of peppermint. J Plant Pathol Microb 4:211

    Google Scholar 

  • Okabe I, Morikawa C, Matsumoto N, Yokoyama K (1998) Variation in Sclerotium rolfsii isolates in Japan. Mycoscience 39:399–407

    Article  Google Scholar 

  • Papaioannou IA, Typas MA (2015) Barrage formation is independent from heterokaryon incompatibility in Verticillium dahliae. Eur J Plant Pathol 141:71–82

    Article  Google Scholar 

  • Paparu P, Acur A, Kato F et al (2020) Morphological and pathogenic characterization of Sclerotium rolfsii, the causal agent of southern blight disease on common bean in Uganda. Plant Dis 104(8):2130–2137

    Article  PubMed  Google Scholar 

  • Paul NC, Hwang EJ, Nam SS et al (2017) Phylogenetic placement and morphological characterization of Sclerotium rolfsii (Teleomorph: Athelia rolfsii) associated with blight disease of Ipomoea batatas in Korea. Mycobiology 45(3):129–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul SK, Gupta DR, Mahapatra CK et al (2023) Morpho-molecular, cultural and pathological characterization of Athelia rolfsii causing southern blight disease on common bean. Heliyon 9(5):E16136. https://doi.org/10.1016/j.heliyon.2023.e16136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad SD, Basha ST, Reddy ENPG (2010) Molecular variability among the isolates of Sclerotium rolfsii causing stem rot of groundnut by RAPD, ITS-PCR and RFLP. Eur Asia J Bio Sci 4:80–87

    Article  Google Scholar 

  • Prova A, Akanda AM, Islam S, Hossain MM (2018) Characterization of Sclerotinia sclerotiorum, an emerging fungal pathogen causing blight in hyacinth bean (Lablab purpureus). Plant Pathol J 34(5):367–380. https://doi.org/10.5423/PPJ.OA.02.2018.0028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Punja ZK (1985) The biology, ecology, and control of Sclerotium Rolfsii. Annu Rev Phytopathol 23:97–127. https://doi.org/10.1146/annurev.py.23.090185.000525

    Article  CAS  Google Scholar 

  • Punja ZK, Damiani A (1996) Comparative growth, morphology, and physiology of three Sclerotium species. Mycologia 88(5):694–706

    Article  Google Scholar 

  • Punja ZK, Sun LJ (2001) Genetic diversity among mycelial compatibility groups of Sclerotium rolfsii (teleomorph Athelia rolfsii) and S. delphinii. Mycol Res 105(5):537–546

    Article  CAS  Google Scholar 

  • Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20

    Article  CAS  Google Scholar 

  • Remesal E, Jordán-Ramírez R, Jiménez-Díaz RM, Navas-Cortés JA (2012) Mycelial compatibility groups and pathogenic diversity in Sclerotium rolfsii populations from sugar beet crops in Mediterranean-type climate regions. Plant Pathol 61:739–753. https://doi.org/10.1111/j.1365-3059.2011.02552.x

    Article  CAS  PubMed  Google Scholar 

  • Rolfs PH (1892) Tomato blight – Some hints. Fla Agric Exp Stn Bull 18

  • Sarma BK, Singh UP, Singh KP (2002) Variability in Indian isolates of Sclerotium rolfsii. Mycologia 94(6):1051–1058. https://doi.org/10.2307/3761870

    Article  CAS  PubMed  Google Scholar 

  • Shimul AH (2021) Betel leaf farming burgeoning in Rajshahi. The Business Post. https://businesspostbd.com/nation/betel-leaf-farming-burgeoning-in-rajshahi-23640 Accessed 5 September 2021

  • Shokes FM, Rhogalski K, Gorbet DW, Brenneman TB, Berger DA (1996) Techniques for inoculation of peanut with Sclerotium rolfsii in the greenhouse and field. Peanut Sci 23:124–128

    Article  Google Scholar 

  • Siddaramaiah AL, Krishnaprasad KS, Hegde RK (1978) Epidemiological studies of mulberry leaf spot caused by Cercospora moricola Cooke. Ind J Seric 16:44–47

    Google Scholar 

  • Singh A, Mehta S, Singh HB, Nautiyal CS (2003) Biocontrol of collar rot disease of betelvine (Piper betle L.) caused by Sclerotium rolfsii using rhizosphere-competent Pseudomonas fluorescens NBRI-N6 and P. fluorescens NBRI-N. Curr Microbiol 47:153–158

    Article  CAS  PubMed  Google Scholar 

  • Sokal R, Michener CA (1958) A statistical method for evaluating systematic relationships. Kansas Univ Sci Bull 38:1409–1438

    Google Scholar 

  • Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol 9(4):678–687. https://doi.org/10.1093/oxfordjournals.molbev.a040752

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Kumar S (2021) MEGA 11: molecular evolutionary genetics analysis Version 11. Mol Biol Evol 38(7):3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanjila N, Islam S, Akhter MS, Alam MS, Begum MF (2022) In vitro effects of different fungicides (botanicals, chemicals, and bio-agents) on mycelial growth of Sclerotium rolfsii causing betel vine (Piper betle L) foot rot disease in Bangladesh. Arch Phytopathol Pflanzenschutz 55(18):2130–2145

    Article  CAS  Google Scholar 

  • Ullah ASM, Tani M, Tsuchiya J et al (2020) Impact of betel leaf cultivation on the protected forest area of teknaf peninsula, Bangladesh. Small-Scale Forestry 19:335–355. https://doi.org/10.1007/s11842-020-09441-w

    Article  Google Scholar 

  • Wang F, Tang T, Mao T et al (2023) Development of EST-SSR primers and genetic diversity analysis of the southern blight pathogen Sclerotium rolfsii using transcriptome data. Front Microbiol 14:1152865. https://doi.org/10.3389/fmicb.2023.1152865

    Article  PubMed  PubMed Central  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18(24):7213–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie C, Huang CH, Vallad GE (2014) Mycelial compatibility and pathogenic diversity among Sclerotium rolfsii isolates in the southern United States. Plant Dis 98:1685–1694. https://doi.org/10.1094/pdis-08-13-0861-re

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The first author was awarded the NST fellowship from the Ministry of Science and Technology, Bangladesh. The authors would like to thank Professor Robert L. Wick, University of Massachusetts, USA, for his critical review and valuable comments. The authors are highly grateful to betel vine farmers for their cooperation during the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Shamim Akhter or Ferdousi Begum.

Ethics declarations

Conflict of interest

The authors declare they have no financial or conflict of interest.

Research involving human participants and/or animals

The research accomplished in the manuscript does not involve any human participants or animal preparations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 2671 KB) Supplementary Fig. 1 Mycelial growth patterns of the isolated S. rolfsii isolates

13205_2023_3890_MOESM2_ESM.docx

Supplementary file2 (DOCX 16 KB) Supplementary Table 1. Morphological characteristics used for the description of S. rolfsii Sacc and their attributes (Banakar et al. 2017) Supplementary Table 2. Name of RAPD primers and their sequences.

Supplementary file3 (XLSX 11 KB) Supplementary Table 3 Data used for correlation analysis

13205_2023_3890_MOESM4_ESM.xlsx

Supplementary file4 (XLSX 11 KB) Supplementary Table 4 The results of the correlation analysis that was used for preparing the correlation plot

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanjila, N., Islam, S., Akhter, M.S. et al. Characterization of Sclerotium rolfsii causing foot rot: a severe threat of betel vine cultivation in Bangladesh. 3 Biotech 14, 58 (2024). https://doi.org/10.1007/s13205-023-03890-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03890-8

Keywords

Navigation