Skip to main content
Log in

Biological functions of circRNAs and their advance on skeletal muscle development in bovine

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The development of skeletal muscle in animals is a complex biological process, which are strictly and precisely regulated by many genes and non-coding RNAs. Circular RNA (circRNA) was found as a novel class of functional non-coding RNA with ring structure in recent years, which appears in the process of transcription and is formed by covalent binding of single-stranded RNA molecules. With the development of sequencing and bioinformatics analysis technology, the functions and regulation mechanisms of circRNAs have attracted great attention due to its high stability characteristics. The role of circRNAs in skeletal muscle development have been gradually revealed, where circRNAs were involved in various biological processes, such as proliferation, differentiation, and apoptosis of skeletal muscle cells. In this review, we summarized the current studies advance of circRNAs involved in skeletal muscle development in bovine, and hope to gain a deeper understanding of the functional roles of the circRNAs in muscle growth. Our results will provide some theoretical supports and great helps for the genetic breeding of this species, and aiming at improving bovine growth and development and preventing muscle diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data supporting this study's findings are available at the request of the corresponding author.

References

  • Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL, Gorospe M (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 14:361–369

    Article  PubMed  PubMed Central  Google Scholar 

  • AbouHaidar MG, Venkataraman S, Golshani A, Liu B, Ahmad T (2014) Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc Natl Acad Sci USA 111:14542–14547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnberg AC, Van Ommen GJ, Grivell LA, Van Bruggen EF, Borst P (1980) Some yeast mitochondrial RNAs are circular. Cell 19:313–319

    Article  CAS  PubMed  Google Scholar 

  • Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66

    Article  CAS  PubMed  Google Scholar 

  • Aufiero S, van den Hoogenhof MMG, Reckman YJ, Beqqali A, van der Made I, Kluin J, Khan MAF, Pinto YM, Creemers EE (2018) Cardiac circRNAs arise mainly from constitutive exons rather than alternatively spliced exons. RNA 24:815–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DT, Xiao X (2015) The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 61:221–230

    Article  CAS  PubMed  Google Scholar 

  • Bailleul B (1996) During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles. Nucleic Acids Res 24:1015–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldas C, So CW, MacGregor A, Ford AM, McDonald B, Chan LC, Wiedemann LM (1998) Exon scrambling of MLL transcripts occur commonly and mimic partial genomic duplication of the gene. Gene 208:167–176

    Article  CAS  PubMed  Google Scholar 

  • Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73:1019–1030

    Article  CAS  PubMed  Google Scholar 

  • Chao CW, Chan DC, Kuo A, Leder P (1998) The mouse formin (Fmn) gene: abundant circular RNA transcripts and gene-targeted deletion analysis. Mol Med 4:614–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YG, Kim MV, Chen X, Batista PJ, Aoyama S, Wilusz JE, Iwasaki A, Chang HY (2017) Sensing self and foreign circular RNAs by intron identity. Mol Cell 67(228–238):e225

    Google Scholar 

  • Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, Song W, Li X, Li L, Du Z, Jia L, Zhou L, Li W, Hoffman AR, Hu JF, Cui J (2018) A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol 19:218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Lei S, Jiang T, Zeng J, Zhou S, She Y (2020) Roles of lncRNAs and circRNAs in regulating skeletal muscle development. Acta Physiol (oxf) 228:e13356

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Wei X, Song M, Jiang R, Huang K, Deng Y, Liu Q, Shi D, Li H (2021a) Circular RNA circMYBPC1 promotes skeletal muscle differentiation by targeting MyHC. Mol Ther Nucleic Acids 24:352–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen MM, Zhao YP, Zhao Y, Deng SL, Yu K (2021b) Regulation of myostatin on the growth and development of skeletal muscle. Front Cell Dev Biol 9:785712

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Zhang Y, Li Z, Wang T, Zhang X, Zheng B (2018) A lariat-derived circular RNA is required for plant development in Arabidopsis. Sci China Life Sci 61:204–213

    Article  CAS  PubMed  Google Scholar 

  • Chioccarelli T, Pierantoni R, Manfrevola F, Porreca V, Fasano S, Chianese R, Cobellis G (2020) Histone post-translational modifications and CircRNAs in mouse and human spermatozoa: potential epigenetic marks to assess human sperm quality. J Clin Med 9:640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, Jourdain A, Tergaonkar V, Schmid M, Zubieta C, Conn SJ (2017) A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants 3:17053

    Article  CAS  PubMed  Google Scholar 

  • Cortes-Lopez M, Gruner MR, Cooper DA, Gruner HN, Voda AI, van der Linden AM, Miura P (2018) Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics 19:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Das A, Das D, Abdelmohsen K, Panda AC (2020) Circular RNAs in myogenesis. Biochim Biophys Acta Gene Regul Mech 1863:194372

    Article  CAS  PubMed  Google Scholar 

  • Dong R, Ma XK, Chen LL, Yang L (2017) Increased complexity of circRNA expression during species evolution. RNA Biol 14:1064–1074

    Article  PubMed  Google Scholar 

  • Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44:2846–2858

    Article  PubMed  PubMed Central  Google Scholar 

  • Du WW, Yang W, Li X, Awan FM, Yang Z, Fang L, Lyu J, Li F, Peng C, Krylov SN, Xie Y, Zhang Y, He C, Wu N, Zhang C, Sdiri M, Dong J, Ma J, Gao C, Hibberd S, Yang BB (2018) A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene 37:5829–5842

    Article  CAS  PubMed  Google Scholar 

  • Elnour IE, Wang X, Zhansaya T, Akhatayeva Z, Khan R, Cheng J, Hung Y, Lan X, Lei C, Chen H (2021) Circular RNA circMYL1 inhibit proliferation and promote differentiation of myoblasts by sponging miR-2400. Cells 10:176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabowski PJ, Zaug AJ, Cech TR (1981) The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of Tetrahymena. Cell 23:467–476

    Article  CAS  PubMed  Google Scholar 

  • Guo JU, Agarwal V, Guo H, Bartel DP (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15:409

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo X, Tan W, Wang C (2021) The emerging roles of exosomal circRNAs in diseases. Clin Transl Oncol 23:1020–1033

    Article  CAS  PubMed  Google Scholar 

  • Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, Kjems J (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30:4414–4422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    Article  CAS  PubMed  Google Scholar 

  • Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, Gabel G, Beutner F, Scholz M, Thiery J, Musunuru K, Krohn K, Mann M, Teupser D (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu MT, Coca-Prados M (1979) Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280:339–340

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Zhu H, Shi Y, Wu W, Cai H, Chen X (2015) cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/beta-catenin pathway. PLoS ONE 10:e0131225

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Wang Y, Zhang C, Sun X (2020) Biological functions of circRNAs and their progress in livestock and poultry. Reprod Domest Anim 55:1667–1677

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Ge F, Ma X, Dai R, Dingkao R, Zhaxi Z, Burenchao G, Bao P, Wu X, Guo X, Chu M, Yan P, Liang C (2021a) Comprehensive analysis of mRNA, lncRNA, circRNA, and miRNA expression profiles and their ceRNA networks in the Longissimus Dorsi muscle of Cattle-Yak and Yak. Front Genet 12:772557

    Article  CAS  PubMed Central  Google Scholar 

  • Huang K, Chen M, Zhong D, Luo X, Feng T, Song M, Chen Y, Wei X, Shi D, Liu Q, Li H (2021b) Circular RNA profiling reveals an abundant circEch1 that promotes myogenesis and differentiation of bovine skeletal muscle. J Agric Food Chem 69:592–601

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zhang C, Xiong J, Ren H (2021c) Emerging important roles of circRNAs in human cancer and other diseases. Genes Dis 8:412–423

    Article  CAS  PubMed  Google Scholar 

  • Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjems J, Garrett RA (1988) Novel splicing mechanism for the ribosomal RNA intron in the archaebacterium Desulfurococcus mobilis. Cell 54:693–703

    Article  CAS  PubMed  Google Scholar 

  • Kolakofsky D (1976) Isolation and characterization of Sendai virus DI-RNAs. Cell 8:547–555

    Article  CAS  PubMed  Google Scholar 

  • Kos A, Dijkema R, Arnberg AC, van der Meide PH, Schellekens H (1986) The hepatitis delta (delta) virus possesses a circular RNA. Nature 323:558–560

    Article  CAS  PubMed  Google Scholar 

  • Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:675–691

    Article  CAS  PubMed  Google Scholar 

  • Lai X, Bazin J, Webb S, Crespi M, Zubieta C, Conn SJ (2018) CircRNAs in plants. Adv Exp Med Biol 1087:329–343

    Article  CAS  PubMed  Google Scholar 

  • Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20:1829–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66(22–37):e29

    Google Scholar 

  • Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X, Huang S (2015a) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25:981–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G (2015b) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22:256–264

    Article  PubMed  Google Scholar 

  • Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, Wei J, Yao RW, Yang L, Chen LL (2017) Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol Cell 67(214–227):e217

    Google Scholar 

  • Li H, Wei X, Yang J, Dong D, Hao D, Huang Y, Lan X, Plath M, Lei C, Ma Y, Lin F, Bai Y, Chen H (2018a) circFGFR4 promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of Wnt3a. Mol Ther Nucleic Acids 11:272–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Yang J, Wei X, Song C, Dong D, Huang Y, Lan X, Plath M, Lei C, Ma Y, Qi X, Bai Y, Chen H (2018b) CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a. J Cell Physiol 233:4643–4651

    Article  CAS  PubMed  Google Scholar 

  • Li J, Sun D, Pu W, Wang J, Peng Y (2020) Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer 6:319–336

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Liu T, Wang X, He A (2017) Circles reshaping the RNA world: from waste to treasure. Mol Cancer 16:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZH, Zhou Y, Liang GH, Ling Y, Tan WG, Tan LY, Andrews R, Zhong WJ, Zhang XX, Song EW, Gong C (2019) Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death Dis 10:55

    Article  PubMed Central  Google Scholar 

  • Liu R, Liu X, Bai X, Xiao C, Dong Y (2020a) Identification and characterization of circRNA in Longissimus Dorsi of different breeds of cattle. Front Genet 11:565085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wang X, Li J, Hu S, Deng Y, Yin H, Bao X, Zhang QC, Wang G, Wang B, Shi Q, Shan G (2020b) Identification of mecciRNAs and their roles in the mitochondrial entry of proteins. Sci China Life Sci 63:1429–1449

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Sun X, Li N, Wang W, Kuang D, Tong P, Han Y, Dai J (2018) CircRNAs in the tree shrew (Tupaia belangeri) brain during postnatal development and aging. Aging (albany NY) 10:833–852

    Article  CAS  PubMed  Google Scholar 

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Chen S, Han JX, Qian B, Wang XR, Zhong WL, Qin Y, Zhang H, Gao WF, Lei YY, Yang W, Yang L, Zhang C, Liu HJ, Liu YR, Zhou HG, Sun T, Yang C (2018) Twist1 regulates vimentin through Cul2 circular RNA to promote EMT in hepatocellular carcinoma. Cancer Res 78:4150–4162

    Article  CAS  PubMed  Google Scholar 

  • Mercatelli N, Fittipaldi S, De Paola E, Dimauro I, Paronetto MP, Jackson MJ, Caporossi D (2017) MiR-23-TrxR1 as a novel molecular axis in skeletal muscle differentiation. Sci Rep 7:7219

    Article  PubMed  PubMed Central  Google Scholar 

  • Molkentin JD, Olson EN (1996) Defining the regulatory networks for muscle development. Curr Opin Genet Dev 6:445–453

    Article  CAS  Google Scholar 

  • Ng WL, Marinov GK, Liau ES, Lam YL, Lim YY, Ea CK (2016) Inducible RasGEF1B circular RNA is a positive regulator of ICAM-1 in the TLR4/LPS pathway. RNA Biol 13:861–871

    Article  PubMed  PubMed Central  Google Scholar 

  • Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, Kinzler KW, Vogelstein B (1991) Scrambled exons. Cell 64:607–613

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Song C, Li H, Cao X, Ma Y, Wang X, Huang Y, Lan X, Lei C, Chaogetu B, Chen H (2019) Circular RNA SNX29 sponges miR-744 to regulate proliferation and differentiation of myoblasts by activating the Wnt5a/Ca(2+) signaling pathway. Mol Ther Nucleic Acids 16:481–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi A, Ru W, Yang H, Yang Y, Tang J, Yang S, Lan X, Lei C, Sun X, Chen H (2022) Circular RNA ACTA1 acts as a sponge for miR-199a-5p and miR-433 to regulate bovine myoblast development through the MAP3K11/MAP2K7/JNK pathway. J Agric Food Chem 70:3357–3373

    Article  CAS  PubMed  Google Scholar 

  • Qu S, Liu Z, Yang X, Zhou J, Yu H, Zhang R, Li H (2018) The emerging functions and roles of circular RNAs in cancer. Cancer Lett 414:301–309

    Article  CAS  PubMed  Google Scholar 

  • Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Ohman M, Refojo D, Kadener S, Rajewsky N (2015) Circular RNAs in the Mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58:870–885

    Article  CAS  PubMed  Google Scholar 

  • Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA 73:3852–3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid C, Steiner T, Froesch ER (1983) Preferential enhancement of myoblast differentiation by insulin-like growth factors (IGF I and IGF II) in primary cultures of chicken embryonic cells. FEBS Lett 161:117–121

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CA, Giusto JD, Bao A, Hopper AK, Matera AG (2019) Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Res 47:6452–6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Guo X, Wang W (2017) Identifcation and characterization of circular RNAs in zebrafsh. FEBS Lett 591:213–220

    Article  CAS  PubMed  Google Scholar 

  • Shen M, Li T, Chen L, Wu P, Chen F, Zhang G, Wang J (2019) Identification and functional analysis of circRNAs in chicken (Gallus gallus) small yellow follicle. J Agric Biotechnol (Chinese) 27:773–784

    Google Scholar 

  • Shen X, Tang J, Ru W, Zhang X, Huang Y, Lei C, Cao H, Lan X, Chen H (2020a) CircINSR regulates fetal bovine muscle and fat development. Front Cell Dev Biol 8:615638

    Article  PubMed  Google Scholar 

  • Shen X, Zhang X, Ru W, Huang Y, Lan X, Lei C, Chen H (2020b) circINSR promotes proliferation and reduces apoptosis of embryonic myoblasts by sponging miR-34a. Mol Therapy Nucleic Acids 19:986–999

    Article  CAS  Google Scholar 

  • Shen X, Tang J, Jiang R, Wang X, Yang Z, Huang Y, Lan X, Lei C, Chen H (2021) CircRILPL1 promotes muscle proliferation and differentiation via binding miR-145 to activate IGF1R/PI3K/AKT pathway. Cell Death Dis 12:142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Chen C, Su Y, Wang W, Yang S, Zhou Q, Wang G, Li Z, Song J, Zhang Z, Yuan W, Liu J (2019) Regulatory mechanisms and clinical perspectives of circRNA in digestive system neoplasms. J Cancer 10:2885–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Tsukahara T (2014) A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci 15:9331–9342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34:e63

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao H, Xiong Q, Zhang F, Zhang N, Liu Y, Suo X, Li X, Yang Q, Chen M (2018) Circular RNA profiling reveals chi_circ_0008219 function as microRNA sponges in pre-ovulatory ovarian follicles of goats (Capra hircus). Genomics 110:257–266

    Article  CAS  Google Scholar 

  • Wang J, Zhu M, Pan J, Chen C, Xia S, Song Y (2019a) Circular RNAs: a rising star in respiratory diseases. Respir Res 20:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Cao X, Dong D, Shen X, Cheng J, Jiang R, Yang Z, Peng S, Huang Y, Lan X, Elnour IE, Lei C, Chen H (2019b) Circular RNA TTN Acts As a miR-432 sponge to facilitate proliferation and differentiation of myoblasts via the IGF2/PI3K/AKT signaling pathway. Mol Ther Nucleic Acids 18:966–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Zhang Y, Deng L, Qu Z, Guo P, Liu L, Yu Z, Liu N (2022) The function and regulation network mechanism of circRNA in liver diseases. Cancer Cell Int 22:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Li H, Yang J, Hao D, Dong D, Huang Y, Lan X, Plath M, Lei C, Lin F, Bai Y, Chen H (2017) Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p. Cell Death Dis 8:e3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Shi Y, Dai Z, Wang P, Meng X, Yin B (2021) Underlying metastasis mechanism and clinical application of exosomal circular RNA in tumors (review). Int J Oncol 58:289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen J, Liao J, Liang J, Chen XP, Zhang B, Chu L (2020) Circular RNA HIPK3: a key circular RNA in a variety of human cancers. Front Oncol 10:773

    Article  PubMed  PubMed Central  Google Scholar 

  • Werfel S, Nothjunge S, Schwarzmayr T, Strom TM, Meitinger T, Engelhardt S (2016) Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol 98:103–107

    Article  CAS  PubMed  Google Scholar 

  • Xia P, Wang S, Ye B, Du Y, Li C, Xiong Z, Qu Y, Fan Z (2018) A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion. Immunity 48:688-701 e687

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Chen LL, Wang Y, Wong CC, Xiao X, Wang Z (2017) Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 27:626–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Wang J, Zhou Z, Jiang R, Huang J, Chen L, Cao Z, Chu H, Han B, Cheng Y, Chao J (2018a) Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation. FASEB J 32:3264–3277

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, Huang S, Xie B, Zhang N (2018b) Novel Role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 110:304–315

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, He T, Chen Q (2021) The roles of CircRNAs in regulating muscle development of livestock animals. Front Cell Dev Biol 9:619329

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye CY, Chen L, Liu C, Zhu QH, Fan L (2015) Widespread noncoding circular RNAs in plants. New Phytol 208:88–95

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Shen X, Zhao J, Cao X, He H, Han S, Chen Y, Cui C, Wei Y, Wang Y, Li D, Zhu Q (2020) Circular RNA CircFAM188B encodes a protein that regulates proliferation and differentiation of chicken skeletal muscle satellite cells. Front Cell Dev Biol 8:522588

    Article  PubMed  PubMed Central  Google Scholar 

  • You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, Sun W, Sambandan S, Chen T, Schuman EM, Chen W (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18:603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue B, Wang J, Song C, Wu J, Cao X, Huang Y, Lan X, Lei C, Huang B, Chen H (2019) Biogenesis and ceRNA role of circular RNAs in skeletal muscle myogenesis. Int J Biochem Cell Biol 117:105621

    Article  CAS  PubMed  Google Scholar 

  • Yue B, Wang J, Ru W, Wu J, Cao X, Yang H, Huang Y, Lan X, Lei C, Huang B, Chen H (2020) The circular RNA circHUWE1 sponges the miR-29b-AKT3 axis to regulate myoblast development. Mol Ther Nucleic Acids 19:1086–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang J, Lu D, Xu A (2020) The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function. J Neurosci Res 98:87–97

    Article  CAS  PubMed  Google Scholar 

  • Zaphiropoulos PG (1996) Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc Natl Acad Sci USA 93:6536–6541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaphiropoulos PG (1997) Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis. Mol Cell Biol 17:2985–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang J, Van Wittenberghe N, Xing Y, Giallourakis CC, Mullen AC (2017) Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep 20:2262–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Students Research Training Program of Henan University of Science and Technology (No. 2020354), and Guangdong Province Key Laboratory of Fish Ecology and Environment (No. LFE-2016-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Huang.

Ethics declarations

Conflict of interest

All the authors confirm that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Huang, Y., Gao, X. et al. Biological functions of circRNAs and their advance on skeletal muscle development in bovine. 3 Biotech 13, 133 (2023). https://doi.org/10.1007/s13205-023-03558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03558-3

Keywords

Navigation