Skip to main content
Log in

A lariat-derived circular RNA is required for plant development in Arabidopsis

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Lariat RNA is produced during pre-mRNA splicing, and it is traditionally thought as by-products, due to the quick turnover by debranching followed by degradation. However, recent findings identified many lariat RNAs accumulate with a circular form in higher eukaryotes. Although the remarkable accumulation, biological consequence of lariat-derived circular RNAs (here we name laciRNAs) remains largely unknown. Here, we report that a specific laciRNA from At5g37720 plays an essential role in plant development by regulating gene expression globally. We focus on 17 laciRNAs with accumulation in wild type plants by circular RNA sequencing in Arabidopsis. To determine biological functions of these laciRNAs, we constructed one pair of transgenic plants for each laciRNA, in which the local gene with or without introns was over-expressed in wild type plants, respectively. By comparing morphological phenotypes and transcriptomic profiles between two classes of transgenic plants, we show that over-expression of the laciRNA derived from the 1st intron of At5g37720 causes pleiotropic phenotypes, including curly and clustered leaf, late flowering, reduced fertility, and accompanied with altered expression of approximately 800 genes. Our results provide another example that a specific plant circular RNA regulates gene expression in a similar manner to that of other non-coding RNAs under physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armakola, M., Higgins, M.J., Figley, M.D., Barmada, S.J., Scarborough, E.A., Diaz, Z., Fang, X., Shorter, J., Krogan, N.J., Finkbeiner, S., Farese, R.V., and Gitler, A.D. (2012). Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet 44, 1302–1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashwal-Fluss, R., Meyer, M., Pamudurti, N.R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N., and Kadener, S. (2014). circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56, 55–66.

    Article  CAS  PubMed  Google Scholar 

  • Conn, V.M., Hugouvieux, V., Nayak, A., Conos, S.A., Capovilla, G., Cildir, G., Jourdain, A., Tergaonkar, V., Schmid, M., Zubieta, C., and Conn, S.J. (2017). A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants 3, 17053.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., and Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388.

    Article  CAS  PubMed  Google Scholar 

  • Jeck, W.R., and Sharpless, N.E. (2014). Detecting and characterizing circular RNAs. Nat Biotechnol 32, 453–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karst, S.M., Rütz, M.L., and Menees, T.M. (2000). The yeast retrotransposons Ty1 and Ty3 require the RNA lariat debranching enzyme, Dbr1p, for efficient accumulation of reverse transcripts. Biochem Biophys Res Commun 268, 112–117.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H.C., Kim, G.M., Yang, J.M., and Ki, J.W. (2001). Cloning, expression, and complementation test of the RNA lariat debranching enzyme cDNA from mouse. Mol Cells 11, 198–203.

    CAS  PubMed  Google Scholar 

  • Kim, J.W., Kim, H.C., Kim, G.M., Yang, J.M., Boeke, J.D., and Nam, K. (2000). Human RNA lariat debranching enzyme cDNA complements the phenotypes of Saccharomyces cerevisiae dbr1 and Schizosaccharomyces pombe dbr1 mutants. Nucleic Acids Res 28, 3666–3673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., Zhong, G., Yu, B., Hu, W., Dai, L., Zhu, P., Chang, Z., Wu, Q., Zhao, Y., Jia, Y., Xu, P., Liu, H., and Shan, G. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22, 256–264.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Wang, S., Cheng, J., Su, C., Zhong, S., Liu, Q., Fang, Y., Yu, Y., Lv, H., Zheng, Y., and Zheng, B. (2016). Intron lariat RNA inhibits microRNA biogenesis by sequestering the Dicing complex in Arabidopsis. PLoS Genet 12, e1006422.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, T., Cui, L., Zhou, Y., Zhu, C., Fan, D., Gong, H., Zhao, Q., Zhou, C., Zhao, Y., Lu, D., Luo, J., Wang, Y., Tian, Q., Feng, Q., Huang, T., and Han, B. (2015). Transcriptome-wide investigation of circular RNAs in rice. RNA 21, 2076–2087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S.D., Gregersen, L.H., Munschauer, M., Loewer, A., Ziebold, U., Landthaler, M., Kocks, C., le Noble, F., and Rajewsky, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338.

    Article  CAS  PubMed  Google Scholar 

  • Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piwecka, M., Glažar, P., Hernandez-Miranda, L.R., Memczak, S., Wolf, S.A., Rybak-Wolf, A., Filipchyk, A., Klironomos, F., Cerda Jara, C.A., Fenske, P., Trimbuch, T., Zywitza, V., Plass, M., Schreyer, L., Ayoub, S., Kocks, C., Kühn, R., Rosenmund, C., Birchmeier, C., and Rajewsky, N. (2017). Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526.

    Article  Google Scholar 

  • Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.

    Article  CAS  PubMed  Google Scholar 

  • Ruskin, B., Krainer, A.R., Maniatis, T., and Green, M.R. (1984). Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38, 317–331.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, H., Zuo, Y., Wang, J., Zhang, M.Q., Malhotra, A., and Mayeda, A. (2006). Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34, e63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L., and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7, 562–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H., Hill, K., and Perry, S.E. (2004). An Arabidopsis RNA lariat debranching enzyme is essential for embryogenesis. J Biol Chem 279, 1468–1473.

    Article  CAS  PubMed  Google Scholar 

  • Wang, P.L., Bao, Y., Yee, M.C., Barrett, S.P., Hogan, G.J., Olsen, M.N., Dinneny, J.R., Brown, P.O., and Salzman, J. (2014). Circular RNA is expressed across the eukaryotic tree of life. PLoS ONE 9, e90859.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye, C.Y., Chen, L., Liu, C., Zhu, Q.H., and Fan, L. (2015). Widespread noncoding circular RNAs in plants. New Phytol 208, 88–95.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Zhang, X.O., Chen, T., Xiang, J.F., Yin, Q.F., Xing, Y.H., Zhu, S., Yang, L., and Chen, L.L. (2013). Circular intronic long noncoding RNAs. Mol Cell 51, 792–806.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31422029, 31470281, 31671261) and the Recruitment Program of Global Experts (China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binglian Zheng.

Electronic supplementary material

Table S1

List of de-regulated genes in laciRNA-OE plants

Table S2

List of GO analysis of de-regulated genes in laciRNA-OE plants

Table S3

Primers used in this study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Zhang, Y., Li, Z. et al. A lariat-derived circular RNA is required for plant development in Arabidopsis. Sci. China Life Sci. 61, 204–213 (2018). https://doi.org/10.1007/s11427-017-9182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9182-3

Keywords

Navigation