Skip to main content
Log in

Probiotic Debaryomyces hansenii CBS 8339 yeast enhanced immune responses in mice

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

This study aimed to examine the effect of Debaryomyces hansenii CBS 8339 on innate immune responses in mice. Thirty BALB/c mice were randomly treated with phosphate buffered saline (PBS) (control) and two D. hansenii (Dh) doses: Dh 10ˆ6 CFU (colony forming units) and Dh 10ˆ8 CFU daily for 15 days. Spleen, blood, and gut samples were taken on days 7 and 15. Mouse splenocytes were isolated and challenged with Escherichia coli. Immunological assays and immune-related gene expressions were performed. Serum was obtained from blood for total IgA and IgG antibody titer determination. Gut samples were taken for yeast colonization assessment. Phagocytosis, respiratory burst activity, and nitric oxide production in mice were mainly enhanced (p < 0.05) upon 7 days of D. hansenii intake at a concentration of 10ˆ8 CFU before and after bacterial challenge. Moreover, oral D. hansenii in mice upregulated (p < 0.05) gene expression of pro-inflammatory cytokines (INF-γ, IL-6 and IL-1β) before or after E. coli challenge on day 7 but downregulated (p < 0.05) on day 15. Furthermore, total serum IgG and IgA titers were higher (p < 0.05) in Dh 10ˆ8 CFU at days 7 and 15, and only at day 7, respectively, than that in the other dose and control groups. Finally, D. hansenii was detected in the gut of mice that received the treatments, suggesting that yeast survived gastrointestinal transit. Altogether, a short period (7 days) of D. hansenii CBS 8339 oral delivery improved immune innate response on mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aindelis G, Ypsilantis P, Chlichlia K (2021) Alterations in faecal microbiota and elevated levels of intestinal IgA following oral administration of Lacticaseibacillus casei in mice. Probiotics Antimicrob Proteins 1–11

  • Ali M, Soltanian S, Mirghaed AT, Akhlaghi M, Hossein Hoseinifar S (2022) The potential benefits of Lactobacillus farraginis and Enterococcus durans, isolated from kefir, as probiotic candidates on innate immune responses, expression of some immune genes, and resistance to Lactococcosis disease in juvenile rainbow trout. Aquac Res 53(13):4588–4604

    Article  CAS  Google Scholar 

  • Andlid T, Juárez RV, Gustafsson L (1995) Yeast colonizing the intestine of rainbow trout (Salmo gairdneri) and turbot (Scophtalmus maximus). Microb Ecol 30(3):321–334

    Article  CAS  Google Scholar 

  • Andlid T, Vázquez-Juárez R, Gustafsson L (1998) Yeasts isolated from the intestine of rainbow trout adhere to and grow in intestinal mucus. Mol Mar Biol Biotechnol 7(2):115–126

    CAS  Google Scholar 

  • Angulo M, Reyes-Becerril M, Cepeda-Palacios R, Tovar-Ramírez D, Esteban MÁ, Angulo C (2019) Probiotic effects of marine Debaryomyces hansenii CBS 8339 on innate immune and antioxidant parameters in newborn goats. Appl Microbiol Biotechnol 103(5):2339–2352

    Article  CAS  Google Scholar 

  • Angulo M, Reyes-Becerril M, Medina-Córdova N, Tovar-Ramírez D, Angulo C (2020) Probiotic and nutritional effects of Debaryomyces hansenii on animals. Appl Microbiol Biotechnol 104(18):7689–7699

    Article  CAS  Google Scholar 

  • Ansari M, Kuche K, Ghadi R, Chaudhari D, Khan R, Jain S (2022) Socioeconomic impact of antimicrobial resistance and their integrated mitigation by one health approach. In: Emerging modalities in mitigation of antimicrobial resistance. Springer, Cham, pp 135–156

  • Arsène MMJ, Davares AKL, Andreevna SL, Vladimirovich EA, Carime BZ, Marouf R, Khelifi I (2021) The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics. Vet World 14(2):319–328

    Article  Google Scholar 

  • Ashraf R, Shah NP (2014) Immune system stimulation by probiotic microorganisms. Crit Rev Food Sci Nutr 54(7):938–956

    Article  CAS  Google Scholar 

  • Aslam B, Khurshid M, Arshad MI, Muzammil S, Rasool M, Yasmeen N, Shah T, Chaudhry TH, Rasool MH, Shahid A, Xueshan X, Baloch Z (2021) Antibiotic resistance: one health one world outlook. Front Cell Infect Microbiol 25(11):771510

    Article  Google Scholar 

  • Authier H, Salon M, Rahabi M, Bertrand B, Blondeau C, Kuylle S, Coste A (2021) Oral administration of Lactobacillus helveticus LA401 and Lactobacillus gasseri LA806 combination attenuates oesophageal and gastrointestinal candidiasis and consequent gut inflammation in mice. J Fungi 7(1):57

    Article  CAS  Google Scholar 

  • Azad M, Kalam A, Sarker M, Wan D (2018) Immunomodulatory effects of probiotics on cytokine profiles. BioMed Res Int 2018:8063647

    Article  Google Scholar 

  • Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Spivak MY (2018) Specific properties of probiotic strains: relevance and benefits for the host. EPMA J 9(2):205–223

    Article  Google Scholar 

  • Caruffo M, Navarrete N, Salgado O, Díaz A, López P, García K, Feijóo CG, Navarrete P (2015) Potential probiotic yeasts isolated from the fish gut protect zebrafish (Danio rerio) from a Vibrio anguillarum challenge. Front Microbiol 6:1093

    Article  Google Scholar 

  • Ceseña CE, Jacinto EC, González AL, Villasante FV, Castro RMM, Ochoa N, Campa-Córdova AI (2021) Dietary supplementation of Debaryomyces hansenii enhanced survival, antioxidant and immune response in juvenile shrimp Penaeus vannamei challenged with Vibrio parahaemolyticus. Trop Subtrop Agroecosyst 24(2):71

  • Czech A, Smolczyk A, Ognik K, Wlazło Ł, Nowakowicz-Dębek B, Kiesz M (2018) Effect of dietary supplementation with Yarrowia lipolytica or Saccharomyces cerevisiae yeast and probiotic additives on haematological parameters and the gut microbiota in piglets. Res Vet Sci 119:221–227

    Article  CAS  Google Scholar 

  • de Avila LDC, De Leon PMM, De Moura MQ, Berne MEA, Scaini CJ, LeivasLeite FP (2016) Modulation of IL-12 and IFN γ by probiotic supplementation promotes protection against Toxocara canis infection in mice. Parasite Immunol 38(5):326–330

    Article  Google Scholar 

  • Dong X, Zhang N, Zhou M, Tu Y, Deng K, Diao Q (2013) Effects of dietary probiotics on growth performance, faecal microbiota and serum profiles in weaned piglets. Anim Prod Sci 54(5):616–621

    Article  Google Scholar 

  • Dvorožňáková E, Bucková B, Hurníková Z, Revajová V, Lauková A (2016) Effect of probiotic bacteria on phagocytosis and respiratory burst activity of blood polymorphonuclear leukocytes (PMNL) in mice infected with Trichinella spiralis. Vet Parasitol 231:69–76

    Article  Google Scholar 

  • Esteban MA, Mulero V, Muñoz J, Meseguer J (1998) Methodological aspects of assessing phagocytosis of Vibrio anguillarum by leucocytes of gilthead seabream (Sparus aurata L.) by flow cytometry and electron microscopy. Cell Tissue Res 293(1):133–141

    Article  CAS  Google Scholar 

  • FAO, WHO (2002) Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO Working Group on drafting guidelines for the evaluation of probiotics in food, p 8

  • Fernández-Pacheco P, Pintado C, Briones Pérez A, Arévalo-Villena M (2021) Potential probiotic strains of Saccharomyces and non-Saccharomyces: functional and biotechnological characteristics. J Fungi (Basel) 7(3):177

    Article  Google Scholar 

  • Frost I, Van Boeckel TP, Pires J, Craig J, Laxminarayan R (2019) Global geographic trends in antimicrobial resistance: the role of international travel. J Travel Med 26(8):taz036

    Article  Google Scholar 

  • Galdeano CM, Cazorla SI, Dumit JML, Vélez E, Perdigón G (2019) Beneficial effects of probiotic consumption on the immune system. Ann Nutr Metab 74(2):115–124

    Article  Google Scholar 

  • Garcia G, Dogi C, Moreno De, de LeBlanc A, Greco C, Cavaglieri L (2016) Gut-borne Saccharomyces cerevisiae, a promising candidate for the formulation of feed additives, modulates immune system and gut microbiota. Benef Microbes 7(5):659–668

    Article  CAS  Google Scholar 

  • Han SK, Shin YJ, Lee DY, Kim KM, Yang SJ, Choi JW, Kim DH (2020) Lactobacillus rhamnosus HDB1258 modulates gut microbiota-mediated immune response in mice with or without LPS-induced systemic inflammation. BMC Microbiol 21:146

    Article  Google Scholar 

  • He Y, Tang Y, Peng M, Xie G, Li W, Tan Z (2019) Influence of Debaryomyces hansenii on bacterial lactase gene diversity in intestinal mucosa of mice with antibiotic-associated diarrhea. PLoS One 14(12):0e0225802

    Article  CAS  Google Scholar 

  • Hudson LE, McDermott CD, Stewart TP, Hudson WH, Rios D, Fasken MB, Lamb TJ (2016) Characterization of the probiotic yeast Saccharomyces boulardii in the healthy mucosal immune system. PLoS One 11(4):e0153351

    Article  Google Scholar 

  • Islam MMT, Shekhar HU (2015) Impact of oxidative stress on human health. In: Rani V, Yadav U (eds) Free radicals in human health and disease. Springer, New Delhi

    Google Scholar 

  • Jawhara S, Poulain D (2007) Saccharomyces boulardii decreases inflammation and intestinal colonization by Candida albicans in a mouse model of chemically-induced colitis. Med Mycol 45(8):691–700

  • Jeong DM, Yoo SJ, Jeon MS, Chun BH, Han DM, Jeon CO, Kang HA (2022) Genomic features, aroma profiles, and probiotic potential of the Debaryomyces hansenii species complex strains isolated from Korean soybean fermented food. Food Microbiol 105:104011

    Article  CAS  Google Scholar 

  • Karamese M, Aydin H, Sengul E, Gelen V, Sevim C, Ustek D, Karakus E (2016) The immunostimulatory effect of lactic acid bacteria in a rat model. Iran J Immunol 13(3):220–228

    Google Scholar 

  • Kemenade BMLV, Groeneveld A, Rens BTTM, Rombout JHWM (1994) Characterization of macrophages and neutrophilic granulocytes from the pronephros of carp (Cyprinus carpio). J Exp Biol 187:143–158

    Article  CAS  Google Scholar 

  • Li A, Wang Y, Li Z, Qamar H, Mehmood K, Zhang L, Li J (2019) Probiotics isolated from yaks improves the growth performance, antioxidant activity, and cytokines related to immunity and inflammation in mice. Microb Cell Fact 18(1):1–12

    Article  Google Scholar 

  • Li M, Wang Y, Cui H, Li Y, Sun Y, Qiu HJ (2020) Characterization of lactic acid bacteria isolated from the gastrointestinal tract of a wild boar as potential probiotics. Front Vet Sci 7:49

    Article  CAS  Google Scholar 

  • Licona-Jain A, Racotta I, Angulo C, Luna-González A, Escamilla-Montes R, Cortés-Jacinto E, Morelos-Castro RM, Campa-Córdova ÁI (2022) Combined administration routes of marine yeasts enhanced immune-related genes and protection of white shrimp (Penaeus vannamei) against Vibrio parahaemolyticus. Fish Shellfish Immunol 124:192–200

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{{ - \Delta \Delta C_{{\text{T}}} }}\) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lund T, Chiayvareesajja J, Larsen JSH, Roed HK (1995) Antibody response after immunization as a potential indirect marker for improved resistance against furunculosis. Fish Shellfish Immunol 5:109–119

    Article  Google Scholar 

  • Morales-Lange B, Djordjevic B, Gaudhaman A, Press CM, Olson J, Mydland LT, Øverland M (2022) Dietary inclusion of hydrolyzed Debaryomyces hansenii yeasts modulates physiological responses in plasma and immune organs of Atlantic Salmon (Salmo salar) Parr exposed to acute hypoxia stress. Front Physiol 13:836810

  • Neumann NF, Fagan D, Belosevi M (1995) Macrophage activating factor(s) secreted by mitogen-stimulated goldfish kidney leukocytes synergize with bacterial lipopolysaccharide to induce nitric oxide production in teleost macrophages. Dev Comp Immunol 19:473–482

    Article  CAS  Google Scholar 

  • Ochangco HS, Gamero A, Smith IM, Christensen JE, Jespersen L, Arneborg N (2016) In vitro investigation of Debaryomyces hansenii strains for potential probiotic properties. World J Microbiol Biotechnol 32(9):141

    Article  Google Scholar 

  • Ouwehand AC (2017) A review of dose-responses of probiotics in human studies. Benef Microbes 8(2):143–151

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):e45–e45

    Article  CAS  Google Scholar 

  • Rajput IR, Ying H, Yajing S, Arain MA, Weifen L, Ping L, Wenhua L (2017) Saccharomyces boulardii and Bacillus subtilis B10 modulate TLRs and cytokines expression patterns in jejunum and ileum of broilers. PLoS One 12(3):e0173917

    Article  Google Scholar 

  • Ren D, Li C, Qin Y, Yin R, Du S, Liu H, Jin N (2015) Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests. Anaerobe 35:22–27

    Article  Google Scholar 

  • Reyes-Becerril M, Salinas I, Cuesta A, Meseguer J, Tovar-Ramirez D, Ascencio-Valle F, Esteban MA (2008a) Oral delivery of live yeast Debaryomyces hansenii modulates the main innate immune parameters and the expression of immune-relevant genes in the gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 25(6):731–739

    Article  CAS  Google Scholar 

  • Reyes-Becerril M, Tovar-Ramírez D, Ascencio-Valle F, Civera-Cerecedo R, Gracia-López V, Barbosa-Solomieu V (2008b) Effects of dietary live yeast Debaryomyces hansenii on the immune and antioxidant system in juvenile leopard grouper Mycteroperca rosacea exposed to stress. Aquaculture 280(1–4):39–44

    Article  CAS  Google Scholar 

  • Reyes‐Becerril M, Tovar‐Ramírez D, Ascencio‐Valle F, Civera‐Cerecedo R, Gracia‐López V, Barbosa‐Solomieu V, Esteban MÁ (2011) Effects of dietary supplementation with probiotic live yeast Debaryomyces hansenii on the immune and antioxidant systems of leopard grouper Mycteroperca rosacea infected with Aeromonas hydrophila. Aquac Res 42(11):1676–1686

  • Reyes-Becerril M, Alamillo E, Angulo C (2021a) Probiotic and immunomodulatory activity of marine yeast Yarrowia lipolytica strains and response against Vibrio parahaemolyticus in fish. Probiotics Antimicrob Proteins 13(5):1292–1305

    Article  CAS  Google Scholar 

  • Reyes-Becerril M, Angulo C, Angulo M, Esteban MÁ (2021b) Probiotic properties of Debaryomyces hansenii BCS004 and their immunostimulatory effect in supplemented diets for gilthead seabream (Sparus aurata). Aquac Res 52(6):2715–2726

    Article  CAS  Google Scholar 

  • Sen S, Mansell TJ (2020) Yeasts as probiotics: mechanisms, outcomes, and future potential. Fungal Genet Biol 137:103333

    Article  CAS  Google Scholar 

  • Shao H, Zhang C, Wang C, Tan Z (2020) Intestinal mucosal bacterial diversity of antibiotic-associated diarrhea (AAD) mice treated with Debaryomyces hansenii and Qiweibaizhu powder. 3 Biotech 10(9):1–11

    Article  Google Scholar 

  • Shruthi B, Deepa, N, Somashekaraiah R, Adithi G, Divyashree S, Sreenivasa MY (2022). Exploring biotechnological and functional characteristics of probiotic yeasts: a review. Biotechnol Rep 34: e00716

  • Shu Q, Gill HS (2002) Immune protection mediated by the probiotic Lactobacillus rhamnosus HN001 (DR20™) against Escherichia coli O157: H7 infection in mice. FEMS Immunol Med Microbiol 34(1):59–64

    CAS  Google Scholar 

  • Sun Y, Rajput IR, Arain MA, Li Y, Baloch DM (2017) Oral administration of Saccharomyces boulardii alters duodenal morphology, enzymatic activity and cytokine production response in broiler chickens. Anim Sci J 88(8):1204–1211

    Article  CAS  Google Scholar 

  • Teles A, Alvarez-González CA, Llera-Herrera R, Gisbert E, Salas-Leiva J, del Carmen R-J, Tovar-Ramírez D (2022) Debaryomyces hansenii CBS 8339 promotes larval development in Seriola rivoliana. Aquaculture 560:738587

    Article  CAS  Google Scholar 

  • Teng L, Fu H, Wang M, Deng C, Chen J (2015) Stimulation of RAW264.7 macrophages by sulfated Escherichia coli K5 capsular polysaccharide in vitro. Mol Med Rep 12(4):5545–5553

    Article  CAS  Google Scholar 

  • Tovar D, Zambonino J, Cahu C, Gatesoupe FJ, Vázquez-Juárez R, Lésel R (2002) Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae. Aquaculture 204(1–2):113–123

    Article  CAS  Google Scholar 

  • Tovar-Ramírez D, Infante JZ, Cahu C, Gatesoupe FJ, Vázquez-Juárez R (2004) Influence of dietary live yeast on European sea bass (Dicentrarchus labrax) larval development. Aquaculture 234(1–4):415–427

    Article  Google Scholar 

  • Tovar-Ramírez D, Mazurais D, Gatesoupe JF, Quazuguel P, Cahu CL, Zambonino-Infante JL (2010) Dietary probiotic live yeast modulates antioxidant enzyme activities and gene expression of sea bass (Dicentrarchus labrax) larvae. Aquaculture 300(1–4):142–147

    Article  Google Scholar 

  • Vázquez-Juárez R, Andlid T, Gustafsson L (1997) Adhesion of yeast isolated from fish gut to crude intestinal mucus of rainbow trout, Salmo gairdneri. Mol Mar Biol Biotechnol 6(1):64–71

    Google Scholar 

  • Vejarano R, Gil-Calderón A (2021) Commercially available non-Saccharomyces yeasts for winemaking: Current market, advantages over Saccharomyces, biocompatibility, and safety. Fermentation 7(3):171

    Article  CAS  Google Scholar 

  • Wilkins T, Sequoia J (2017) Probiotics for gastrointestinal conditions: a summary of the evidence. Am Fam Physician 96(3):170–178

    Google Scholar 

  • Xie G, Wu Y, Zheng T, Shen K, Tan Z (2020) Effect of Debaryomyces hansenii combined with Qiweibaizhu powder extract on the gut microbiota of antibiotic-treated mice with diarrhea. 3 Biotech 10(3):1–10

    Article  CAS  Google Scholar 

  • Yoda K, He F, Kawase M, Miyazawa K, Hiramatsu M (2014) Oral administration of Lactobacillus gasseri TMC0356 stimulates peritoneal macrophages and attenuates general symptoms caused by enteropathogenic Escherichia coli infection. J Microbiol Immunol Infect 47(2):81–86

    Article  CAS  Google Scholar 

  • Zeng AO, Peng M, Liu H, Guo Z, Xu J, Wang S, Tan Z (2019) Effects of Debaryomyces hansenii treatment on intestinal mucosa microecology in mice with antibiotic-associated diarrhea. PLoS One 14(11):e0224730

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Margarito Rodríguez (Plant Biotechnology Immunology and Vaccinology Lab.), Guadalupe Sanchez (Bioterium) and Orlando Lugo (Oxidative Stress Lab.) from CIBNOR for technical assistance; and Diana Fischer for English edition. Miriam Angulo thanks CONACYT for postdoctoral fellowship Grant number 935561.

Funding

This research was financially supported by CONACYT (INFR-2014-01/225924 and PDCPN2014-01/248033).

Author information

Authors and Affiliations

Authors

Contributions

MA and CA conceived the study. MA, AR-V, MR-B, KG, and EM-E performed the experiments. MA and CA wrote the initial draft of the manuscript. CA involved in project administration. CA involved in funding acquisition. All the authors commented on working versions of the manuscript and agreed on the final version of the manuscript.

Corresponding author

Correspondence to Carlos Angulo.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angulo, M., Ramos, A., Reyes-Becerril, M. et al. Probiotic Debaryomyces hansenii CBS 8339 yeast enhanced immune responses in mice. 3 Biotech 13, 28 (2023). https://doi.org/10.1007/s13205-022-03442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-022-03442-6

Keywords

Navigation