Skip to main content

Advertisement

Log in

A comprehensive review on RNA interference-mediated targeting of interleukins and its potential therapeutic implications in colon cancer

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Colon cancer is the world’s fourth leading cause of death. It is cancer of the latter part of the large intestine, i.e. the colon. Chronic inflammation over a long period also leads to the development of cancer. Cancer in the colon region is arduous to diagnose and is detected at a later stage when it metastasizes to other parts of the body like the liver, lungs, peritoneum, etc. Colon cancer is a great example of solid tumours associated with chronic inflammation. Although conventional therapies are effective, they lose their effectiveness beyond a certain point. Relapse of the disease occurs frequently. RNA interference (RNAi) is emerging as a great tool to specifically attack the cancer cells of a target site like the colon. RNAi deals with epigenetic changes made in the defective cells which ultimately leads to their death without harming the healthy cells. In this review, two types of epigenetic modulators have been considered, namely siRNA and miRNA, and their effect on interleukins. Interleukins, a class of cytokines, are major inflammatory responses of the body that are released by immune cells like leukocytes and macrophages. Some of these interleukins are pro-inflammatory, thereby promoting inflammation which eventually causes cancer. RNAi can prevent colon cancer by inhibiting pro-inflammatory interleukins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of our future research study.

References

  • Abdulhassan BA, Al-obaidi AB, Kareem NM, Shamran HA (2021) Detection of Epstein-Barr virus and human cytomegalovirus in colorectal cancer tissue by real time PCR. Ann Trop Med Public Health 24(5):150–156

    Article  Google Scholar 

  • Allahyari SE, Hajizadeh F, Zekiy AO, Mansouri N, Gilan PS, Mousavi SM, Masjedi A, Hassannia H, Ahmadi M, Mohammadi H, Yousefi M, Izadi S, Zolbanin NM, Jafari R, Jadidi-Niaragh F (2021) Simultaneous inhibition of CD73 and IL-6 molecules by siRNA-loaded nanoparticles prevents the growth and spread of cancer. Nanomed NBM 34(102384):1–13

    Google Scholar 

  • Ambinder RF, Robertson KD, Moore SM, Yang J (1996) Epstein-Barr virus as a therapeutic target in Hodgkin’s disease and nasopharyngeal carcinoma. Semin Cancer Biol 7(4):217–226

    Article  CAS  Google Scholar 

  • Andoh A, Shioya M, Nishida A, Bamba S, Tsujikawa T, Kim-Mitsuyama S, Fujiyama Y (2009) Expression of IL-24, an activator of the JAK1/STAT3/SOCS3 cascade, is enhanced in inflammatory bowel disease. J Immunol 183(1):687–695

    Article  CAS  Google Scholar 

  • Angius A, Pira G, Scanu AM, Uva P (2019) MicroRNA-425-5p expression affects BRAF/RAS/MAPK pathways in colorectal cancers. Int J Med Sci 16(11):1480–1491

    Article  CAS  Google Scholar 

  • Apte RN, Dotan S, Elkabets M, White MR, Reich E, Carmi Y, Song X, Dvozkin T, Krelin Y, Voronov E (2006) The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev 25(3):387–408

    Article  CAS  Google Scholar 

  • Ashraf NM, Imran K, Kastner DW, Ikram K, Mushtaq A, Hussain A, Zeeshan N (2017) Potential involvement of mi-RNA 574–3p in progression of prostate cancer: a bioinformatic study. Mol Cell Probes 36:21–28

    Article  CAS  Google Scholar 

  • Bankaitis KV, Fingleton B (2015) Targeting IL4/IL4R for the treatment of epithelial cancer metastasis. Clin Exp Metastasis 32(8):847–856

    Article  CAS  Google Scholar 

  • Barderas R, Bartolomé RA, Fernandez-Aceñero MJ, Torres S, Casal JI (2012) High expression of IL-13 receptor α2 in colorectal cancer is associated with invasion, liver metastasis, and poor prognosis. Cancer Res 72(11):2780–2790

    Article  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  Google Scholar 

  • Beatty PR, Krams SM, Martinez OM (1997) Involvement of IL-10 in the autonomous growth of EBV-transformed B cell lines. J Immunol 158(9):4045–4051

    Article  CAS  Google Scholar 

  • Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, Burg J, Strand S, Kiesslich R, Huber S, Ito H, Nishimoto N, Yoshizaki K, Kishimoto T, Galle PR, Blessing M, Rose-John S, Neurath MF (2004) TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21(4):491–501

    Article  CAS  Google Scholar 

  • Benderska N, Dittrich A-L, Knaup S, Rau TT, Neufert C, Wach S, Fahlbusch FB, Rauh M, Wirtz RM, Agaimy A, Srinivasan S, Mahadevan V, Rümmele P, Rapti E, Gazouli M, Hartmann A, Schneider-Stock R (2015) miRNA-26b Overexpression in Ulcerative Colitis-associated Carcinogenesis. Inflamm Bowel Dis 21(9):2039–2051

    Article  Google Scholar 

  • Brabletz T (2012) MiR-34 and SNAIL: another double-negative feedback loop controlling cellular plasticity/EMT governed by p53. Cell Cycle 11(2):215–216

    Article  CAS  Google Scholar 

  • Cao H, Zhang J, Liu H, Wan L, Zhang H, Huang Q, Xu E, Lai M (2016) IL-13/STAT6 signaling plays a critical role in the epithelial-mesenchymal transition of colorectal cancer cells. Oncotarget 7(38):61183–61198

    Article  Google Scholar 

  • Carneiro LAM, Fritz JÖH, Kufer TA, Travassos LH (2009) NLRs: nucleotide-binding domain and leucine-rich-repeat-containing proteins. EcoSal plus 3(2):1–30

    Article  Google Scholar 

  • Chae W-J, Gibson TF, Zelterman D, Hao L, Henegariu O, Bothwell ALM (2010) Ablation of IL-17A abrogates progression of spontaneous intestinal tumorigenesis. PNAS 107(12):5540–5544

    Article  CAS  Google Scholar 

  • Chae YS, Kim JG, Lee SJ, Kang BW, Lee YJ, Park JY, Jeon H-S, Park JS, Choi GS (2013) A miR-146a polymorphism (rs2910164) predicts risk of and survival from colorectal cancer. Anticancer Res 33(8):3233–3239

    CAS  Google Scholar 

  • Chen C-YA, Chang JT, Ho Y-F, Shyu A-B (2016) MiR-26 down-regulates TNF-α/NF-κB signalling and IL-6 expression by silencing HMGA1 and MALT1. Nucleic Acids Res 44(8):3772–3787

    Article  CAS  Google Scholar 

  • Chen J, Caspi RR, Chong WP (2018a) IL-20 receptor cytokines in autoimmune diseases. J Leukoc Biol 104(5):953–959

    Article  CAS  Google Scholar 

  • Chen J, Gong C, Mao H, Li Z, Fang Z, Chen Q, Lin M, Jiang X, Hu Y, Wang W, Zhang X, Chen X, Li H (2018b) E2F1/SP3/STAT6 axis is required for IL-4-induced epithelial-mesenchymal transition of colorectal cancer cells. Int J Oncol 53(2):567–578

    CAS  Google Scholar 

  • Chen Y, Yang Z, Deng B, Wu D, Quan Y, Min Z (2020) Interleukin 1β/1RA axis in colorectal cancer regulates tumor invasion, proliferation and apoptosis via autophagy. Oncol Rep 43(3):908–918

    CAS  Google Scholar 

  • Cho IS, Kim J, Lim DH, Ahn H-C, Kim H, Lee K-B, Lee YS (2008) Improved serum stability and biophysical properties of siRNAs following chemical modifications. Biotechnol Lett 30(11):1901–1908

    Article  CAS  Google Scholar 

  • Christensen LL, Tobiasen H, Holm A, Schepeler T, Ostenfeld MS, Thorsen K, Rasmussen MH, Birkenkamp-Demtroeder K, Sieber OM, Gibbs P, Lubinski J, Lamy P, COLOFOL steering group, Laurberg S, Oster B, Hansen KQ, Hagemann-Madsen R, Byskov K, Ørntoft TF, Andersen CL (2013) MiRNA-362-3p induces cell cycle arrest through targeting of E2F1, USF2 and PTPN1 and is associated with recurrence of colorectal cancer. Int J Cancer Res 133(1):67–78

    Article  Google Scholar 

  • Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, Pilpel Y, Nielsen FC, Oren M, Lund AH (2010) p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17(2):236–245

    Article  CAS  Google Scholar 

  • Chung AS, Wu X, Zhuang G, Ngu H, Kasman I, Zhang J, Vernes J-M, Jiang Z, Meng YG, Peale FV, Ouyang W, Ferrara N (2013) An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 19(9):1114–1123

    Article  CAS  Google Scholar 

  • Chung IC, OuYang CN, Yuan SN, Lin HC, Huang KY (2019) Pretreatment with a heat-killed probiotic modulates the NLRP3 inflammasome and attenuates colitis-associated colorectal cancer in mice. Nutrients 11(3):1–16

    Article  CAS  Google Scholar 

  • Clark J, Rager JE (2020) Chapter 1—epigenetics: an overview of CpG methylation, chromatin remodeling, and regulatory/noncoding RNAs. In: Fry RC (ed) Environmental epigenetics in toxicology and public health (Vol. 22, pp. 3–32). Academic Press.

  • Collins TS, Lee LF, Ting JP (2000) Paclitaxel up-regulates interleukin-8 synthesis in human lung carcinoma through an NF-kappaB- and AP-1-dependent mechanism. Cancer Immunol Immunother 49(2):78–84

    Article  CAS  Google Scholar 

  • Conciatori F, Bazzichetto C, Amoreo CA, Sperduti I, Donzelli S, Diodoro MG, Buglioni S, Falcone I, Shirasawa S, Blandino G, Ferretti G, Cognetti F, Milella M, Ciuffreda L (2020) BRAF status modulates Interelukin-8 expression through a CHOP-dependent mechanism in colorectal cancer. Commun Biol 3(1):1–6

    Article  Google Scholar 

  • Cong J, Gong J, Yang C, Xia Z, Zhang H (2020) miR-22 suppresses tumor invasion and metastasis in colorectal cancer by targeting NLRP3. Cancer Manag Res 12:5419–5429

    Article  CAS  Google Scholar 

  • (2011) Correction: clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Res 71(13):4732–4732

  • Davis BK, Wen H, Ting JPY (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735

    Article  CAS  Google Scholar 

  • Demeure MJ, Armaghany T, Ejadi S, Ramanathan RK, Elfiky A, Strosberg JR, Smith DC, Whitsett T, Liang WS, Sekar S, Carpten JD, Fredlund P, Niforos D, Dye A, Gahir S, Semple SC, Kowalski MM (2016) A phase I/II study of TKM-080301, a PLK1-targeted RNAi in patients with adrenocortical cancer (ACC). J Clin Oncol 34(15_suppl):2547–2547

    Article  Google Scholar 

  • Dinarello CA, Novick D, Kim S, Kaplanski G (2013) Interleukin-18 and IL-18 binding protein. Front Immunol 4:1–11

    Article  CAS  Google Scholar 

  • Dmitrieva-Posocco O, Dzutsev A, Posocco DF, Hou V, Yuan W, Thovarai V, Mufazalov IA, Gunzer M, Shilovskiy IP, Khaitov MR, Trinchieri G, Waisman A, Grivennikov SI (2019) Cell-type-specific responses to interleukin-1 control microbial invasion and tumor-elicited inflammation in colorectal cancer. Immunity 50(1):166–180

    Article  CAS  Google Scholar 

  • Di Stefano AB, Iovino F, Lombardo Y, Eterno V, Höger T, Dieli F, Stassi G, Todaro M (2010) Survivin is regulated by interleukin-4 in colon cancer stem cells. J Cell Physiol 225(2):555–561

    Article  Google Scholar 

  • Du J, Gao R, Wang Y, Nguyen T, Yang F, Shi Y, Liu T, Liao W, Li R, Zhang F, Ge X, Zhao B (2020) MicroRNA-26a/b have protective roles in oral lichen planus. Cell Death Dis 11(1):15–28

    Article  CAS  Google Scholar 

  • Dykxhoorn DM, Palliser D, Lieberman J (2006) The silent treatment: siRNAs as small molecule drugs. Gene Ther 13(6):541–552

    Article  CAS  Google Scholar 

  • Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149(3):515–524

    Article  CAS  Google Scholar 

  • Elaraj DM, Weinreich DM, Varghese S, Puhlmann M, Hewitt SM, Carroll NM, Feldman ED, Turner EM, Alexander HR (2006) The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin Cancer Res 12(4):1088–1096

    Article  CAS  Google Scholar 

  • Ermann J, Staton T, Glickman JN, de Waal Malefyt R, Glimcher LH (2014) Nod/Ripk2 signaling in dendritic cells activates IL-17A-secreting innate lymphoid cells and drives colitis in T-bet−/−.Rag2−/− (TRUC) mice. PNAS 111(25):2559–2566

    Article  Google Scholar 

  • Fang J, Nakamura H, Maeda H (2011) The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151

    Article  CAS  Google Scholar 

  • Fang Z, Gong C, Liu H, Zhang X, Mei L, Song M, Qiu L, Luo S, Zhu Z, Zhang R, Gu H, Chen X (2015) E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2. Biochem Biophys Res Commun 464(2):407–415

    Article  CAS  Google Scholar 

  • Fasseu M, Tréton X, Guichard C, Pedruzzi E, Cazals-Hatem D, Richard C, Aparicio T, Daniel F, Soulé J-C, Moreau R, Bouhnik Y, Laburthe M, Groyer A, Ogier-Denis E (2010) Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease. PLoS One 5(10):1–12

    Article  Google Scholar 

  • Favoriti P, Carbone G, Greco M, Pirozzi F, Pirozzi REM, Corcione F (2016) Worldwide burden of colorectal cancer: a review. Updates Surg 68(1):7–11

    Article  Google Scholar 

  • Feng W-H, Israel B, Raab-Traub N, Busson P, Kenney SC (2002) Chemotherapy induces lytic EBV replication and confers ganciclovir susceptibility to EBV-positive epithelial cell tumors. Cancer Res 62(6):1920–1926

    CAS  Google Scholar 

  • Feng W-H, Hong G, Delecluse H-J, Kenney SC (2004) Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas. J Virol 78(4):1893–1902

    Article  CAS  Google Scholar 

  • Feng Y, Huang W, Meng W, Jegga AG, Wang Y, Cai W, Kim HW, Pasha Z, Wen Z, Rao F, Modi RM, Yu X, Ashraf M (2014) Heat shock improves Sca-1+ stem cell survival and directs ischemic cardiomyocytes toward a prosurvival phenotype via exosomal transfer: a critical role for HSF1/miR-34a/HSP70 pathway. Stem Cells 32(2):462–472

    Article  CAS  Google Scholar 

  • Feng X, Luo Q, Wang H, Zhang H, Chen F (2018) MicroRNA-22 suppresses cell proliferation, migration and invasion in oral squamous cell carcinoma by targeting NLRP3. J Cell Physiol 233(9):6705–6713

    Article  CAS  Google Scholar 

  • Fonseca-Camarillo G, Furuzawa-Carballeda J, Llorente L, Yamamoto-Furusho JK (2013) IL-10– and IL-20–expressing epithelial and inflammatory cells are increased in patients with ulcerative colitis. J Clin Immunol 33(3):640–648

    Article  CAS  Google Scholar 

  • Fonseca-Camarillo G, Furuzawa-Carballeda J, Granados J, Yamamoto-Furusho JK (2014) Expression of interleukin (IL)-19 and IL-24 in inflammatory bowel disease patients: a cross-sectional study. Clin Exp Immunol 177(1):64–75

    Article  CAS  Google Scholar 

  • Galizia G, Lieto E, De Vita F, Romano C, Orditura M, Castellano P, Imperatore V, Infusino S, Catalano G, Pignatelli C (2002a) Circulating levels of interleukin-10 and interleukin-6 in gastric and colon cancer patients before and after surgery: relationship with radicality and outcome. J Interferon Cytokine Res 22(4):473–482

    Article  CAS  Google Scholar 

  • Galizia G, Orditura M, Romano C, Lieto E, Castellano P, Pelosio L, Imperatore V, Catalano G, Pignatelli C, De Vita F (2002b) Prognostic significance of circulating IL-10 and IL-6 serum levels in colon cancer patients undergoing surgery. J Clin Immunol 102(2):169–178

    Article  CAS  Google Scholar 

  • Gao L, Han H, Wang H, Cao L, Feng W-H (2019) IL-10 knockdown with siRNA enhances the efficacy of Doxorubicin chemotherapy in EBV-positive tumors by inducing lytic cycle via PI3K/p38 MAPK/NF-kB pathway. Cancer Lett 462:12–22

    Article  CAS  Google Scholar 

  • Garo LP, Murugaiyan G (2016) Contribution of MicroRNAs to autoimmune diseases. Cell Mol Life Sci 73(10):2041–2051

    Article  CAS  Google Scholar 

  • Garo LP, Ajay AK, Fujiwara M, Gabriely G, Raheja R, Kuhn C, Kenyon B, Skillin N, Kadowaki-Saga R, Saxena S, Murugaiyan G (2021) MicroRNA-146a limits tumorigenic inflammation in colorectal cancer. Nat Commun 12(1):1–16

    Article  Google Scholar 

  • Gatault S, Delbeke M, Driss V, Sarazin A, Dendooven A, Kahn J-E, Lefèvre G, Capron M (2015) IL-18 is involved in eosinophil-mediated tumoricidal activity against a colon carcinoma cell line by upregulating LFA-1 and ICAM-1. J Immunol 195(5):2483–2492

    Article  CAS  Google Scholar 

  • Geng R, Tan X, Wu J, Pan Z, Yi M, Shi W, Liu R, Yao C, Wang G, Lin J, Qiu L, Huang W, Chen S (2017) RNF183 promotes proliferation and metastasis of colorectal cancer cells via activation of NF-κB-IL-8 axis. Cell Death Dis 8(8):1–11

    Article  Google Scholar 

  • Gracie JA, Robertson SE, McInnes IB (2003) Interleukin-18. J Leukoc Biol 73(2):213–224

    Article  CAS  Google Scholar 

  • Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21(1):11–19

    Article  CAS  Google Scholar 

  • Grivennikov SI, Karin M (2011) Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis 70(Suppl 1):i104–i108

    Article  CAS  Google Scholar 

  • Grivennikov S, Karin E, Terzic J, Mucida D, Yu G-Y, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H, Eckmann L, Karin M (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15(2):103–113

    Article  CAS  Google Scholar 

  • Gutiérrez MI, Judde JG, Magrath IT, Bhatia KG (1996) Switching viral latency to viral lysis: a novel therapeutic approach for Epstein-Barr virus-associated neoplasia. Cancer Res 56(5):969–972

    Google Scholar 

  • Hajizadeh F, Moghadaszadeh Ardebili S, Baghi Moornani M, Masjedi A, Atyabi F, Kiani M, Namdar A, Karpisheh V, Izadi S, Baradaran B, Azizi G, Ghalamfarsa G, Sabz G, Yousefi M, Jadidi-Niaragh F (2020) Silencing of HIF-1α/CD73 axis by siRNA-loaded TAT-chitosan-spion nanoparticles robustly blocks cancer cell progression. Eur J Pharmacol 882:1–46

    Article  Google Scholar 

  • Hallaj S, Heydarzadeh Asl S, Alian F, Farshid S, Eshaghi FS, Namdar A, Atyabi F, Masjedi A, Hallaj T, Ghorbani A, Ghalamfarsa G, Sojoodi M, Jadidi-Niaragh F (2020) Inhibition of CD73 using folate targeted nanoparticles carrying anti-CD73 siRNA potentiates anticancer efficacy of Dinaciclib. Life Sci 259:1–12

    Article  Google Scholar 

  • Hammerschmidt W, Sugden B (2013) Replication of Epstein-Barr viral DNA. Cold Spring Harb Persp 5(1):1–13

    Google Scholar 

  • Han H (2018) RNA interference to knock down gene expression. In: DiStefano JK (ed) Disease gene identification: methods and protocols. Springer, New York, pp 293–302

    Chapter  Google Scholar 

  • Hattab D, Gazzali AM, Bakhtiar A (2021) Clinical Advances of siRNA-Based Nanotherapeutics for Cancer Treatment. Pharmaceutics 13(7):1–19

    Article  Google Scholar 

  • Hedrick E, Cheng Y, Jin U-H, Kim K, Safe S (2016) Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are non-oncogene addiction genes in cancer cells. Oncotarget 7(16):22245–22256

    Article  Google Scholar 

  • Hermeking H (2007) p53 enters the microRNA world. Cancer Cell 12(5):414–418

    Article  CAS  Google Scholar 

  • Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12(9):613–626

    Article  CAS  Google Scholar 

  • Hitchler MJ, Domann FE (2009) Metabolic defects provide a spark for the epigenetic switch in cancer. Free Radic Biol Med 47(2):115–127

    Article  CAS  Google Scholar 

  • Ho S-R, Mahanic CS, Lee Y-J, Lin W-C (2014) RNF144A, an E3 ubiquitin ligase for DNA-PKcs, promotes apoptosis during DNA damage. PNAS 111(26):E2646–E2655

    Article  CAS  Google Scholar 

  • Huang Y, Guo J, Gui S (2018) Orally targeted galactosylated chitosan poly(lactic-co-glycolic acid) nanoparticles loaded with TNF-ɑ siRNA provide a novel strategy for the experimental treatment of ulcerative colitis. Eur J Pharm Sci 125:232–243

    Article  CAS  Google Scholar 

  • Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, Sohn-Lee C, le Sage C, Agami R, Tuschl T, Holland EC (2009) The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 23(11):1327–1337

    Article  CAS  Google Scholar 

  • Hyun YS, Han DS, Lee AR, Eun CS, Youn J, Kim H-Y (2012) Role of IL-17A in the development of colitis-associated cancer. Carcinogenesis 33(4):931–936

    Article  CAS  Google Scholar 

  • Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706

    Article  CAS  Google Scholar 

  • Iorio MV, Croce CM (2012) microRNA involvement in human cancer. Carcinogenesis 33(6):1126–1133

    Article  CAS  Google Scholar 

  • Jang J-H, Kim D-H, Surh Y-J (2021) Dynamic roles of inflammasomes in inflammatory tumor microenvironment. NPJ Precis Oncol 5(1):1–11

    CAS  Google Scholar 

  • Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, Ambs S, Chen Y, Meltzer PS, Croce CM, Qin L-X, Man K, Lo C-M, Lee J, Ng IOL, Fan J, Tang Z-Y, Sun H-C, Wang XW (2009) MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 361(15):1437–1447

    Article  CAS  Google Scholar 

  • Jiang C, Zhu W, Xu J, Wang B, Hou W, Zhang R, Zhong N, Ning Q, Han Y, Yu H, Sun J, Meng L, Lu S (2014) MicroRNA-26a negatively regulates toll-like receptor 3 expression of rat macrophages and ameliorates pristane induced arthritis in rats. Arthritis Res Ther 16(1):1–12

    Article  CAS  Google Scholar 

  • Jung J, Lee Y-H, Fang X, Kim S-J, Kim SH, Kim D-H, Song N-Y, Na H-K, Baek J-H, Surh Y-J (2021) IL-1β induces expression of proinflammatory cytokines and migration of human colon cancer cells through upregulation of SIRT1. Arch Biochem Biophys 703:1–8

    Article  Google Scholar 

  • Justiz Vaillant AA, Qurie A (2021) Interleukin. StatPearls Publishing, StatPearls

    Google Scholar 

  • Kalla R, Ventham NT, Kennedy NA, Quintana JF, Nimmo ER, Buck AH, Satsangi J (2015) MicroRNAs: new players in IBD. Gut 64(3):504–517

    Article  CAS  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Investig 119(6):1420–1428

    Article  CAS  Google Scholar 

  • Kanai T, Watanabe M, Hayashi A, Nakazawa A, Yajima T, Okazawa A, Yamazaki M, Ishii H, Hibi T (2000) Regulatory effect of interleukin-4 and interleukin-13 on colon cancer cell adhesion. Br J Cancer 82(10):1717–1723

    CAS  Google Scholar 

  • Karpinski P, Myszka A, Ramsey D, Kielan W, Sasiadek MM (2011) Detection of viral DNA sequences in sporadic colorectal cancers in relation to CpG island methylation and methylator phenotype. Tumour Biol 32(4):653–659

    Article  CAS  Google Scholar 

  • Kathania M, Khare P, Zeng M, Cantarel B, Zhang H, Ueno H, Venuprasad K (2016) Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-γt ubiquitination. Nat Immunol 17(8):997–1004

    Article  CAS  Google Scholar 

  • Kenney SC, Mertz JE (2014) Regulation of the latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol 26:60–68

    Article  CAS  Google Scholar 

  • Kim KS, Lee YK, Kim JS, Koo KH, Hong HJ, Park YS (2008) Targeted gene therapy of LS174 T human colon carcinoma by anti-TAG-72 immunoliposomes. Cancer Gene Ther 15(5):331–340

    Article  CAS  Google Scholar 

  • Kim NH, Kim HS, Li X-Y, Lee I, Choi H-S, Kang SE, Cha SY, Ryu JK, Yoon D, Fearon ER, Rowe RG, Lee S, Maher CA, Weiss SJ, Yook JI (2011) A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol 195(3):417–433

    Article  CAS  Google Scholar 

  • King CE, Wang L, Winograd R, Madison BB, Mongroo PS, Johnstone CN, Rustgi AK (2011) LIN28B fosters colon cancer migration, invasion and transformation through let-7-dependent and -independent mechanisms. Oncogene 30(40):4185–4193

    Article  CAS  Google Scholar 

  • Kis LL, Takahara M, Nagy N, Klein G, Klein E (2006) IL-10 can induce the expression of EBV-encoded latent membrane protein-1 (LMP-1) in the absence of EBNA-2 in B lymphocytes and in Burkitt lymphoma- and NK lymphoma-derived cell lines. Blood 107(7):2928–2935

    Article  CAS  Google Scholar 

  • Knüpfer H, Preiss R (2010) Serum interleukin-6 levels in colorectal cancer patients—a summary of published results. Int J Colorectal Dis 25(2):135–140

    Article  Google Scholar 

  • Koller FL, Hwang DG, Dozier EA, Fingleton B (2010) Epithelial interleukin-4 receptor expression promotes colon tumor growth. Carcinogenesis 31(6):1010–1017

    Article  CAS  Google Scholar 

  • Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang H-W, Chang T-C, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137(6):1005–1017

    Article  CAS  Google Scholar 

  • Kozielski KL, Ruiz-Valls A, Tzeng SY, Guerrero-Cázares H, Rui Y, Li Y, Vaughan HJ, Gionet-Gonzales M, Vantucci C, Kim J, Schiapparelli P, Al-Kharboosh R, Quiñones-Hinojosa A, Green JJ (2019) Cancer-selective nanoparticles for combinatorial siRNA delivery to primary human GBM in vitro and in vivo. Biomaterials 209:79–87

    Article  CAS  Google Scholar 

  • Kozłowski L, Zakrzewska I, Tokajuk P, Wojtukiewicz MZ (2003) Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients. Rocz Akad Med Bialymst 48:82–84

    Google Scholar 

  • Küppers R (2003) B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol 3(10):801–812

    Article  Google Scholar 

  • Lamichhane S, Mo J-S, Sharma G, Choi T-Y, Chae S-C (2021) MicroRNA 452 regulates IL20RA-mediated JAK1/STAT3 pathway in inflammatory colitis and colorectal cancer. Inflamm Res 70(8):903–914

    Article  CAS  Google Scholar 

  • LaPorte SL, Juo ZS, Vaclavikova J, Colf LA, Qi X, Heller NM, Keegan AD, Garcia KC (2008) Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell 132(2):259–272

    Article  CAS  Google Scholar 

  • Laroui H, Geem D, Xiao B, Viennois E, Rakhya P, Denning T, Merlin D (2014) Targeting intestinal inflammation with CD98 siRNA/PEI-loaded nanoparticles. Mol Ther 22(1):69–80

    Article  CAS  Google Scholar 

  • Le DT, Hubbard-Lucey VM, Morse MA, Heery CR, Dwyer A, Marsilje TH, Brodsky AN, Chan E, Deming DA, Diaz LA Jr, Fridman WH, Goldberg RM, Hamilton SR, Housseau F, Jaffee EM, Kang SP, Krishnamurthi SS, Lieu CH, Messersmith W, Benson AB (2017) A blueprint to advance colorectal cancer immunotherapies. Cancer Immunol Res 5(11):942–949

    Article  CAS  Google Scholar 

  • Lee S, Margolin K (2011) Cytokines in Cancer Immunotherapy. Cancers 3(4):3856–3893

    Article  CAS  Google Scholar 

  • Lee YS, Choi I, Ning Y, Kim NY, Khatchadourian V, Yang D, Chung HK, Choi D, LaBonte MJ, Ladner RD, Nagulapalli Venkata KC, Rosenberg DO, Petasis NA, Lenz H-J, Hong Y-K (2012) Interleukin-8 and its receptor CXCR2 in the tumour microenvironment promote colon cancer growth, progression and metastasis. Br J Cancer 106(11):1833–1841

    Article  CAS  Google Scholar 

  • Lee S-J, Cho S-C, Lee E-J, Kim S, Lee S-B, Lim J-H, Choi YH, Kim W-J, Moon S-K (2013) Interleukin-20 promotes migration of bladder cancer cells through extracellular signal-regulated kinase (ERK)-mediated MMP-9 protein expression leading to nuclear factor (NF-κB) activation by inducing the up-regulation of p21WAF1 protein expression*[s]. J Biol Chem 288(8):5539–5552

    Article  CAS  Google Scholar 

  • Leon-Cabrera SA, Molina-Guzman E, Delgado-Ramirez YG, Vázquez-Sandoval A, Ledesma-Soto Y, Pérez-Plasencia CG, Chirino YI, Delgado-Buenrostro NL, Rodríguez-Sosa M, Vaca-Paniagua F, Ávila-Moreno F, Gutierrez-Cirlos EB, Arias-Romero LE, Terrazas LI (2017) Lack of STAT6 attenuates inflammation and drives protection against early steps of colitis-associated colon cancer. Cancer Immunol Res 5(5):385–396

    Article  CAS  Google Scholar 

  • Li BH, Yang XZ, Li PD, Yuan Q, Liu XH, Yuan J, Zhang WJ (2008) IL-4/Stat6 activities correlate with apoptosis and metastasis in colon cancer cells. Biochem Biophys Res Commun 369(2):554–560

    Article  CAS  Google Scholar 

  • Li X, Liu L, Shen Y, Wang T, Chen L, Xu D, Wen F (2014) MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts. Biochem Biophys Res Commun 454(4):512–517

    Article  CAS  Google Scholar 

  • Li X, Nie J, Mei Q, Han W-D (2016) MicroRNAs: Novel immunotherapeutic targets in colorectal carcinoma. World J Gastroenterol 22(23):5317–5331

    Article  CAS  Google Scholar 

  • Li S, Liang X, Ma L, Shen L, Li T, Zheng L, Sun A, Shang W, Chen C, Zhao W, Jia J (2018) MiR-22 sustains NLRP3 expression and attenuates H. pylori—induced gastric carcinogenesis. Oncogene 37(7):884–896

    Article  CAS  Google Scholar 

  • Li W-C, Wu Y-Q, Gao B, Wang C-Y, Zhang J-J (2019) MiRNA-574-3p inhibits cell progression by directly targeting CCND2 in colorectal cancer. Biosci Rep 39(12):1–10

    Article  Google Scholar 

  • Li Y-P, Du X-R, Zhang R, Yang Q (2021) Interleukin-18 promotes the antitumor ability of natural killer cells in colorectal cancer via the miR-574-3p/TGF-β1 axis. Bioengineered 12(1):763–778

    Article  CAS  Google Scholar 

  • Litmanovich A, Khazim K, Cohen I (2018) The role of interleukin-1 in the pathogenesis of cancer and its potential as a therapeutic target in clinical practice. Oncol Ther 6(2):109–127

    Article  Google Scholar 

  • Liu H-X, Ding Y-Q, Li X, Yao K-T (2003) Investigation of Epstein-Barr virus in Chinese colorectal tumors. World J Gastroenterol 9(11):2464–2468

    Article  Google Scholar 

  • Liu S-G, Qin X-G, Zhao B-S, Qi BO, Yao W-J, Wang T-Y, Li H-C, Wu X-N (2013) Differential expression of miRNAs in esophageal cancer tissue. Oncol Lett 5(5):1639–1642

    Article  CAS  Google Scholar 

  • Liu H, Antony S, Roy K, Juhasz A, Wu Y, Lu J, Meitzler JL, Jiang G, Polley E, Doroshow JH (2017) Interleukin-4 and interleukin-13 increase NADPH oxidase 1-related proliferation of human colon cancer cells. Oncotarget 8(24):38113–38135

    Article  Google Scholar 

  • Liu Y, Chen X, Cheng R, Yang F, Yu M, Wang C, Cui S, Hong Y, Liang H, Liu M, Zhao C, Ding M, Sun W, Liu Z, Sun F, Zhang C, Zhou Z, Jiang X, Chen X (2018) The Jun/miR-22/HuR regulatory axis contributes to tumourigenesis in colorectal cancer. Mol Cancer 17(1):11

    Article  Google Scholar 

  • López-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1(6–7):303–314

    Article  Google Scholar 

  • Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J, Mace A, Gantt GA Jr, Sukhdeo K, DeVecchio J, Vasanji A, Leahy P, Hjelmeland AB, Kalady MF, Rich JN (2013) Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med 210(13):2851–2872

    Article  CAS  Google Scholar 

  • Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482(7385):347–355

    Article  CAS  Google Scholar 

  • Lyons JG, Patel V, Roue NC, Fok SY, Soon LL, Halliday GM, Gutkind JS (2008) Snail up-regulates proinflammatory mediators and inhibits differentiation in oral keratinocytes. Cancer Res 68(12):4525–4530

    Article  CAS  Google Scholar 

  • Mangan MSJ, Olhava EJ, Roush WR (2018) Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov 17:588–606

    Article  CAS  Google Scholar 

  • Mantovani L, Henschler R, Brach MA, Mertelsmann RH, Herrmann F (1991) Regulation of gene expression of macrophage-colony stimulating factor in human fibroblasts by the acute phase response mediators interleukin (IL)-1β, tumor necrosis factor-α and IL-6. FEBS Lett 280(1):97–102

    Article  CAS  Google Scholar 

  • Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ (2017) Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci 18(1):1–39

    Article  Google Scholar 

  • Marshall NA, Vickers MA, Barker RN (2003) Regulatory T cells secreting IL-10 dominate the immune response to EBV latent membrane protein 1. J Immunol 170(12):6183–6189

    Article  CAS  Google Scholar 

  • Masjedi A, Hashemi V, Hojjat-Farsangi M, Ghalamfarsa G, Azizi G, Yousefi M, Jadidi-Niaragh F (2018) The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed Pharmacother 108:1415–1424

    Article  CAS  Google Scholar 

  • Masjedi A, Ahmadi A, Atyabi F, Farhadi S, Irandoust M, Khazaei-Poul Y, Ghasemi Chaleshtari M, Edalati Fathabad M, Baghaei M, Haghnavaz N, Baradaran B, Hojjat-Farsangi M, Ghalamfarsa G, Sabz G, Hasanzadeh S, Jadidi-Niaragh F (2020) Silencing of IL-6 and STAT3 by siRNA loaded hyaluronate-N,N,N-trimethyl chitosan nanoparticles potently reduces cancer cell progression. Int J Biol Macromol 149:487–500

    Article  CAS  Google Scholar 

  • Matsumoto S, Hara T, Mitsuyama K, Yamamoto M, Tsuruta O, Sata M, Scheller J, Rose-John S, Kado S-I, Takada T (2010) Essential roles of IL-6 trans-signaling in colonic epithelial cells, induced by the IL-6/soluble-IL-6 receptor derived from lamina propria macrophages, on the development of colitis-associated premalignant cancer in a murine model. J Immunol 184(3):1543–1551

    Article  CAS  Google Scholar 

  • Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. In Chem Rev 109(2):259–302

    Article  CAS  Google Scholar 

  • Mizuno R, Kawada K, Sakai Y (2018) The molecular basis and therapeutic potential of Let-7 MicroRNAs against colorectal cancer. Can J Gastroenterol Hepatol 2018:1–8

    Article  Google Scholar 

  • Mo J-S, Alam KJ, Kang I-H, Park WC, Seo G-S, Choi S-C, Kim H-S, Moon H-B, Yun K-J, Chae S-C (2015) MicroRNA 196B regulates FAS-mediated apoptosis in colorectal cancer cells. Oncotarget 6(5):2843–2855

    Article  Google Scholar 

  • Mo J-S, Alam KJ, Kim H-S, Lee Y-M, Yun K-J, Chae S-C (2016) MicroRNA 429 regulates mucin gene expression and secretion in murine model of colitis. J Crohns Colitis 10(7):837–849

    Article  Google Scholar 

  • Mo JS, Park WC, Choi S-C, Yun KJ, Chae S-C (2019) MicroRNA 452 regulates cell proliferation, cell migration, and angiogenesis in colorectal cancer by suppressing VEGFA expression. Cancers 11(10):1–19

    Article  Google Scholar 

  • Mucida D, Salek-Ardakani S (2009) Regulation of TH17 cells in the mucosal surfaces. J Allergy Clin Immunol 123(5):997–1003

    Article  CAS  Google Scholar 

  • Müller EK, Białas N, Epple M, Hilger I (2022) Nanoparticles carrying NF-κB p65-specific siRNA alleviate colitis in mice by attenuating NF-κB-related protein expression and pro-inflammatory cellular mediator secretion. Pharmaceutics 14(2):1–17

    Article  Google Scholar 

  • Murata T, Noguchi PD, Puri RK (1996) IL-13 induces phosphorylation and activation of JAK2 Janus kinase in human colon carcinoma cell lines: similarities between IL-4 and IL-13 signaling. J Immunol 156(8):2972–2978

    Article  CAS  Google Scholar 

  • Murugaiyan G, Saha B (2009) Protumor vs antitumor functions of IL-17. J Immunol 183(7):4169–4175

    Article  CAS  Google Scholar 

  • Nakamura N (2011) The role of the transmembrane RING finger proteins in cellular and organelle function. Membranes 1(4):354–393

    Article  CAS  Google Scholar 

  • Nayak AK, Dhara AK, Pal D (eds) (2021) Biological macromolecules: bioactivity and biomedical applications. Elsevier.

  • Nikkhoo A, Rostami N, Hojjat-Farsangi M, Azizi G, Yousefi B, Ghalamfarsa G, Jadidi-Niaragh F (2019) Smac mimetics as novel promising modulators of apoptosis in the treatment of breast cancer. J Cell Biochem 120(6):9300–9314

    Article  CAS  Google Scholar 

  • Nikkhoo A, Rostami N, Farhadi S, Esmaily M, Moghadaszadeh Ardebili S, Atyabi F, Baghaei M, Haghnavaz N, Yousefi M, Aliparasti MR, Ghalamfarsa G, Mohammadi H, Sojoodi M, Jadidi-Niaragh F (2020) Codelivery of STAT3 siRNA and BV6 by carboxymethyl dextran trimethyl chitosan nanoparticles suppresses cancer cell progression. Int J Pharm 581:1–12

    Article  Google Scholar 

  • Ning Y, Manegold PC, Hong YK, Zhang W, Pohl A, Lurje G, Winder T, Yang D, LaBonte MJ, Wilson PM, Ladner RD, Lenz H-J (2011) Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int J Cancer 128(9):2038–2049

    Article  CAS  Google Scholar 

  • Olive C (2012) Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev Vaccines 11(2):237–256

    Article  CAS  Google Scholar 

  • Omrane I, Kourda N, Stambouli N, Privat M, Medimegh I, Arfaoui A, Uhrhammer N, Bougatef K, Baroudi O, Bouzaienne H, Marrakchi R, Bignon Y-J, Benammar-Elgaaied A (2014) MicroRNAs 146a and 147b biomarkers for colorectal tumor’s localization. Biomed Res Int 2014:1–10

    Article  Google Scholar 

  • Pachnia D, Drop B, Dworzańska A, Kliszczewska E, Polz-Dacewicz M (2017) Transforming growth factor-β, interleukin-10, and serological markers in EBV-associated gastric carcinoma. Anticancer Res 37(9):4853–4858

    CAS  Google Scholar 

  • Perraud A, Akil H, Nouaille M, Petit D, Labrousse F, Jauberteau MO, Mathonnet M (2011) Expression of p53 and DR5 in normal and malignant tissues of colorectal cancer: correlation with advanced stages. Oncol Rep 26(5):1091–1097

    Google Scholar 

  • Pi F, Binzel DW, Lee TJ, Li Z, Sun M, Rychahou P, Li H, Haque F, Wang S, Croce CM, Guo B, Evers BM, Guo P (2018) Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat Nanotechnol 13(1):82–89

    Article  CAS  Google Scholar 

  • Ptashne M (2009) Binding reactions: epigenetic switches, signal transduction and cancer. Curr Biol 19(6):R234–R241

    Article  CAS  Google Scholar 

  • Quinn EM, Wang JH, O’Callaghan G, Redmond HP (2013) MicroRNA-146a is upregulated by and negatively regulates TLR2 signaling. PLoS One 8(4):1–7

    Article  Google Scholar 

  • Repetto L, Gianni W, Aglianò AM, Gazzaniga P (2005) Impact of EGFR expression on colorectal cancer patient prognosis and survival: a response. Ann Oncol 16(1):102–108

    Article  Google Scholar 

  • Rokavec M, Wu W, Luo J-L (2012) IL6-mediated suppression of miR-200c directs constitutive activation of inflammatory signaling circuit driving transformation and tumorigenesis. Mol Cell 45(6):777–789

    Article  CAS  Google Scholar 

  • Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, Slotta-Huspenina J, Bader FG, Greten FR, Hermeking H (2014) IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Investig 124(4):1853–1867

    Article  CAS  Google Scholar 

  • Rose-John S (2012) IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci 8(9):1237–1247

    Article  CAS  Google Scholar 

  • Rutz S, Wang X, Ouyang W (2014) The IL-20 subfamily of cytokines–from host defence to tissue homeostasis. Nat Rev Immunol 14(12):783–795

    Article  CAS  Google Scholar 

  • Salimifard S, Karoon Kiani F, Sadat Eshaghi F, Izadi S, Shahdadnejad K, Masjedi A, Heydari M, Ahmadi A, Hojjat-Farsangi M, Hassannia H, Mohammadi H, Boroumand-Noughabi S, Keramati MR, Jadidi-Niaragh F (2020) Codelivery of BV6 and anti-IL6 siRNA by hyaluronate-conjugated PEG-chitosan-lactate nanoparticles inhibits tumor progression. Life Sci 260:1–14

    Article  Google Scholar 

  • Schultheis B, Strumberg D, Santel A, Vank C, Gebhardt F, Keil O, Lange C, Giese K, Kaufmann J, Khan M, Drevs J (2014) First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J Clin Oncol 32(36):4141–4148

    Article  CAS  Google Scholar 

  • Shao X, Lei Z, Zhou C (2020) NLRP3 promotes colorectal cancer cell proliferation and metastasis via regulating epithelial mesenchymal transformation. Anti-Cancer Agents Med Chem 20(7):820–827

    Article  CAS  Google Scholar 

  • Shawki S, Ashburn J, Signs SA, Huang E (2018) Colon cancer: inflammation-associated cancer. Surg Oncol Clin N Am 27(2):269–287

    Article  Google Scholar 

  • Siemens H, Jackstadt R, Hünten S, Kaller M, Menssen A, Götz U, Hermeking H (2011) miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10(24):4256–4271

    Article  CAS  Google Scholar 

  • Song X, Voronov E, Dvorkin T, Fima E, Cagnano E, Benharroch D, Shendler Y, Bjorkdahl O, Segal S, Dinarello CA, Apte RN (2003) Differential effects of IL-1 alpha and IL-1 beta on tumorigenicity patterns and invasiveness. J Immunol 171(12):6448–6456

    Article  CAS  Google Scholar 

  • Stuart AD, Stewart JP, Arrand JR, Mackett M (1995) The Epstein-Barr virus encoded cytokine viral interleukin-10 enhances transformation of human B lymphocytes. Oncogene 11(9):1711–1719

    CAS  Google Scholar 

  • Tabernero J, Shapiro GI, LoRusso PM, Cervantes A, Schwartz GK, Weiss GJ, Paz-Ares L, Cho DC, Infante JR, Alsina M, Gounder MM, Falzone R, Harrop J, Seila White AC, Toudjarska I, Bumcrot D, Meyers RE, Hinkle G, Svrzikapa N et al (2013) First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov 3(4):406–417

    Article  CAS  Google Scholar 

  • Taganov KD, Boldin MP, Chang K-J, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. PNAS 103(33):12481–12486

    Article  CAS  Google Scholar 

  • Taylor GS, Blackbourn DJ (2011) Infectious agents in human cancers: lessons in immunity and immunomodulation from gammaherpesviruses EBV and KSHV. Cancer Lett 305(2):263–278

    Article  CAS  Google Scholar 

  • Terzić J, Grivennikov S, Karin E, Karin M (2010) Inflammation and colon cancer. Gastroenterology 138(6):2101–2114

    Article  Google Scholar 

  • Tezcan G, Martynova EV, Gilazieva ZE, McIntyre A, Rizvanov AA, Khaiboullina SF (2019) MicroRNA post-transcriptional regulation of the NLRP3 inflammasome in immunopathologies. Front Pharmacol 10:1–22

    Article  Google Scholar 

  • Thiery JP, Acloque H, Huang RYJ, Angela Nieto M (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890

    Article  CAS  Google Scholar 

  • Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4(5):346–358

    Article  CAS  Google Scholar 

  • Tiernan JP, Perry SL, Verghese ET, West NP, Yeluri S, Jayne DG, Hughes TA (2013) Carcinoembryonic antigen is the preferred biomarker for in vivo colorectal cancer targeting. Br J Cancer 108(3):662–667

    Article  CAS  Google Scholar 

  • Todaro M, Zerilli M, Ricci-Vitiani L, Bini M, Perez Alea M, Maria Florena A, Miceli L, Condorelli G, Bonventre S, Di Gesù G, De Maria R, Stassi G (2006) Autocrine production of interleukin-4 and interleukin-10 is required for survival and growth of thyroid cancer cells. Cancer Res 66(3):1491–1499

    Article  CAS  Google Scholar 

  • Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, Stassi G (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1(4):389–402

    Article  CAS  Google Scholar 

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108

    Article  Google Scholar 

  • Tran TH, Montano MA (2017) Chapter 1—MicroRNAs: mirrors of health and disease. In: Laurence J (ed) Translating MicroRNAs to the Clinic. Academic Press, pp 1–15

    Google Scholar 

  • Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J (2012) Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22(6):725–736

    Article  CAS  Google Scholar 

  • Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, Sanli K, von Feilitzen K, Oksvold P, Lundberg E, Hober S, Nilsson P, Mattsson J, Schwenk JM, Brunnström H et al (2017) A pathology atlas of the human cancer transcriptome. Science 357(6352):1–13

    Article  Google Scholar 

  • Ullman TA, Itzkowitz SH (2011) Intestinal inflammation and cancer. Gastroenterology 140(6):1807–1816

    Article  CAS  Google Scholar 

  • Veerla S, Lindgren D, Kvist A, Frigyesi A, Staaf J, Persson H, Liedberg F, Chebil G, Gudjonsson S, Borg Å, Månsson W, Rovira C, Höglund M (2009) MiRNA expression in urothelial carcinomas: Important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer 124(9):2236–2242

    Article  CAS  Google Scholar 

  • Veiga N, Goldsmith M, Diesendruck Y, Ramishetti S, Rosenblum D, Elinav E, Behlke MA, Benhar I, Peer D (2019) Leukocyte-specific siRNA delivery revealing IRF8 as a potential anti-inflammatory target. J Control Release 313:33–41

    Article  CAS  Google Scholar 

  • Vijayan D, Young A, Teng MWL, Smyth MJ (2017) Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer 17(12):709–724

    Article  CAS  Google Scholar 

  • Vizcaíno C, Mansilla S, Portugal J (2015) Sp1 transcription factor: a long-standing target in cancer chemotherapy. Pharmacol Ther 152:111–124

    Article  Google Scholar 

  • Waldner MJ, Foersch S, Neurath MF (2012) Interleukin-6–a key regulator of colorectal cancer development. Int J Biol Sci 8(9):1248–1253

    Article  CAS  Google Scholar 

  • Wang K, Karin M (2015) Tumor-elicited inflammation and colorectal cancer. Adv Cancer Res 128:173–196

    Article  CAS  Google Scholar 

  • Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H (2009) IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med 206(7):1457–1464

    Article  CAS  Google Scholar 

  • Wang K, Kim MK, Di Caro G, Wong J, Shalapour S, Wan J, Zhang W, Zhong Z, Sanchez-Lopez E, Wu L-W, Taniguchi K, Feng Y, Fearon E, Grivennikov SI, Karin M (2014) Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity 41(6):1052–1063

    Article  CAS  Google Scholar 

  • Wang J, Li Y, Ding M, Zhang H, Xu X, Tang J (2017) Molecular mechanisms and clinical applications of miR-22 in regulating malignant progression in human cancer. Int J Oncol 50(2):345–355

    Article  Google Scholar 

  • West NR, McCuaig S, Franchini F, Powrie F (2015) Emerging cytokine networks in colorectal cancer. Nat Rev Immunol 15(10):615–629

    Article  CAS  Google Scholar 

  • Westphal EM, Blackstock W, Feng W, Israel B, Kenney SC (2000) Activation of lytic Epstein-Barr virus (EBV) infection by radiation and sodium butyrate in vitro and in vivo: a potential method for treating EBV-positive malignancies. Cancer Res 60(20):5781–5788

    CAS  Google Scholar 

  • Wierstra I (2008) Sp1: emerging roles—beyond constitutive activation of TATA-less housekeeping genes. In Biochem Biophys Res Commun 372(1):1–13

    Article  CAS  Google Scholar 

  • Witwer KW, Sisk JM, Gama L, Clements JE (2010) MicroRNA regulation of IFN-beta protein expression: rapid and sensitive modulation of the innate immune response. J Immunol 184(5):2369–2376

    Article  CAS  Google Scholar 

  • Wu S, Rhee K-J, Albesiano E, Rabizadeh S, Wu X, Yen H-R, Huso DL, Brancati FL, Wick E, McAllister F, Housseau F, Pardoll DM, Sears CL (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15(9):1016–1022

    Article  CAS  Google Scholar 

  • Xiong H, Hong J, Du W, Lin Y-W, Ren L-L, Wang Y-C, Su W-Y, Wang J-L, Cui Y, Wang Z-H, Fang J-Y (2012) Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial-mesenchymal transition. J Biol Chem 287(8):5819–5832

    Article  CAS  Google Scholar 

  • Xu H, Liu X, Zhou J, Chen X, Zhao J (2016) miR-574-3p acts as a tumor promoter in osteosarcoma by targeting SMAD4 signaling pathway. Oncol Lett 12(6):5247–5253

    Article  CAS  Google Scholar 

  • Yang X, Liang L, Zhang X-F, Jia H-L, Qin Y, Zhu X-C, Gao X-M, Qiao P, Zheng Y, Sheng Y-Y, Wei J-W, Zhou H-J, Ren N, Ye Q-H, Dong Q-Z, Qin L-X (2013) MicroRNA-26a suppresses tumor growth and metastasis of human hepatocellular carcinoma by targeting interleukin-6-Stat3 pathway. Hepatology 58(1):158–170

    Article  CAS  Google Scholar 

  • Yoshimura K, Hazama S, Iizuka N, Yoshino S, Yamamoto K, Muraguchi M, Ohmoto Y, Noma T, Oka M (2001) Successful immunogene therapy using colon cancer cells (colon 26) transfected with plasmid vector containing mature interleukin-18 cDNA and the Igkappa leader sequence. Cancer Gene Ther 8(1):9–16

    Article  CAS  Google Scholar 

  • Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809

    Article  CAS  Google Scholar 

  • Yu L, Lu J, Zhang B, Liu X, Wang L, Li S-Y, Peng X-H, Xu X, Tian W-D, Li X-P (2013) miR-26a inhibits invasion and metastasis of nasopharyngeal cancer by targeting EZH2. Oncol Lett 5(4):1223–1228

    Article  CAS  Google Scholar 

  • Yu Q, Zhang S, Chao K, Feng R, Wang H, Li M, Chen B, He Y, Zeng Z, Chen M (2016) E3 Ubiquitin ligase RNF183 Is a novel regulator in inflammatory bowel disease. J Crohns Colitis 10(6):713–725

    Article  Google Scholar 

  • Zeitels LR, Acharya A, Shi G, Chivukula D, Chivukula RR, Anandam JL, Abdelnaby AA, Balch GC, Mansour JC, Yopp AC, Richardson JA, Mendell JT (2014) Tumor suppression by miR-26 overrides potential oncogenic activity in intestinal tumorigenesis. Genes Dev 28(23):2585–2590

    Article  Google Scholar 

  • Zeng C, Huang L, Zheng Y, Huang H, Chen L, Chi L (2014) Expression of miR-146a in colon cancer and its significance. Nan Fang Yi Ke Da Xue Xue Bao 34(3):396–400

    CAS  Google Scholar 

  • Zeng J, Chen S, Li C, Ye Z, Lin B, Liang Y, Wang B, Ma Y, Chai X, Zhang X, Zhou K, Zhang Q, Zhang H (2020) Mesenchymal stem/stromal cells-derived IL-6 promotes nasopharyngeal carcinoma growth and resistance to cisplatin via upregulating CD73 expression. J Cancer 11(8):2068–2079

    Article  CAS  Google Scholar 

  • Zhang M, Zhou Y, Xie C, Zhou F, Chen Y, Han G, Zhang WJ (2006) STAT6 specific shRNA inhibits proliferation and induces apoptosis in colon cancer HT-29 cells. Cancer Lett 243(1):38–46

    Article  CAS  Google Scholar 

  • Zhang B, Liu X-X, He J-R, Zhou C-X, Guo M, He M, Li M-F, Chen G-Q, Zhao Q (2011) Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis 32(1):2–9

    Article  CAS  Google Scholar 

  • Zhang J, Han C, Wu T (2012) MicroRNA-26a promotes cholangiocarcinoma growth by activating β-catenin. Gastroenterology 143(1):246–256

    Article  CAS  Google Scholar 

  • Zhang Q, Lenardo MJ, Baltimore D (2017a) 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell 168(1–2):37–57

    Article  CAS  Google Scholar 

  • Zhang R, Wang M, Sui P, Ding L, Yang Q (2017b) Upregulation of microRNA-574-3p in a human gastric cancer cell line AGS by TGF-β1. Gene 605:63–69

    Article  CAS  Google Scholar 

  • Zhang P, Zhu J, Zheng Y, Zhang H, Sun H, Gao S (2019) miRNA-574-3p inhibits metastasis and chemoresistance of epithelial ovarian cancer (EOC) by negatively regulating epidermal growth factor receptor (EGFR). Am J Transl Res 11(7):4151–4165

    CAS  Google Scholar 

  • Zhang W, Fu X, Xie J, Pan H, Han W, Huang W (2021) miR-26a attenuates colitis and colitis-associated cancer by targeting the multiple intestinal inflammatory pathways. Mol Ther Nucl Acids 24:264–273

    Article  CAS  Google Scholar 

  • Zhao X, Lwin T, Zhang X, Huang A, Wang J, Marquez VE, Chen-Kiang S, Dalton WS, Sotomayor E, Tao J (2013) Disruption of the MYC-miRNA-EZH2 loop to suppress aggressive B-cell lymphoma survival and clonogenicity. Leukemia 27(12):2341–2350

    Article  CAS  Google Scholar 

  • Zhou H, Wang K, Hu Z, Wen J (2013) TGF-β1 alters microRNA profile in human gastric cancer cells. Chin J Cancer 25(1):102–111

    Google Scholar 

  • Ziesché E, Bachmann M, Kleinert H, Pfeilschifter J, Mühl H (2007) The interleukin-22/STAT3 pathway potentiates expression of inducible nitric-oxide synthase in human colon carcinoma cells. J Biol Chem 282(22):16006–16015

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank SRM Institute of Science and Technology for providing us the opportunity to work on this topic.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute to the conceptualisation of the article. The literature search and the final draft of the manuscript was carried out by Sagari Sil. The outline of the review was prepared by Janet Bertilla and approved by S. Rupachandra.

Corresponding author

Correspondence to S. Rupachandra.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sil, S., Bertilla, J. & Rupachandra, S. A comprehensive review on RNA interference-mediated targeting of interleukins and its potential therapeutic implications in colon cancer. 3 Biotech 13, 18 (2023). https://doi.org/10.1007/s13205-022-03421-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-022-03421-x

Keywords

Navigation