Skip to main content

Advertisement

Log in

MicroRNA 452 regulates IL20RA-mediated JAK1/STAT3 pathway in inflammatory colitis and colorectal cancer

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

MicroRNAs are a class of small, non-coding RNAs that play a key role in several biological and molecular processes, including tumorigenesis. We previously identified that MIR452 is upregulated in both colorectal cancer (CRC) and colitis. However, the functional mechanisms of MIR452 and its target genes in CRC and colitis are not well understood. So, we hypothesize that MIR452 can influence CRC and DSS-induced colitis model through the regulation of IL20RA and its downstream JAK-STATs signaling pathway.

Methods

We used a luciferase reporter assay to confirm the effect of MIR452 on IL20RA expression. The protein and mRNA expression of a target gene and its associated molecules were measured by western blot, quantitative RT-PCR, and immunohistochemistry.

Results

We found that the IL20RA was a direct target gene of MIR452. Overexpression of MIR452 in CRC cell lines significantly decreased IL20RA and its downstream Janus kinase 1 (JAK1), Signal transducer and activator of transcription 1 (STAT1) and STAT3. Knockdown of IL20RA in CRC cell lines by IL20RA gene silencing also decreased the expression of IL20RA, JAK1, and STAT3, but not of STAT1.

Conclusion

Our results suggest that MIR452 regulates STAT3 through the IL20RA-mediated JAK1 pathway, but not STAT1. Overall, MIR452 acts as tumor suppressor in human CRC and in a mouse colitis model. These findings suggest that MIR452 is a promising therapeutic target in the treatment of cancer and colitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol. 2015;12(12):720–7.

    Article  PubMed  Google Scholar 

  2. Center MM, Jemal A, Ward E. International trends in colorectal cancer incidence rates. Cancer Epidemiol Prev Biomark. 2009;18(6):1688–94.

    Article  Google Scholar 

  3. Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology. 1998;115(1):182–205.

    Article  CAS  PubMed  Google Scholar 

  4. Nadeem MS, et al. Risk of colorectal cancer in inflammatory bowel diseases. Seminars in cancer biology. Amsterdam: Elsevier; 2019.

    Google Scholar 

  5. Ullman TA, Itzkowitz SH. Intestinal inflammation and cancer. Gastroenterology. 2011;140(6):1807–16.

    Article  CAS  PubMed  Google Scholar 

  6. Hoffmeister M, et al. Male sex and smoking have a larger impact on the prevalence of colorectal neoplasia than family history of colorectal cancer. Clin Gastroenterol Hepatol. 2010;8(10):870–6.

    Article  PubMed  Google Scholar 

  7. Hassan C, et al. Impact of lifestyle factors on colorectal polyp detection in the screening setting. Dis Colon Rectum. 2010;53(9):1328–33.

    Article  CAS  PubMed  Google Scholar 

  8. Alam KJ, et al. MicroRNA 375 regulates proliferation and migration of colon cancer cells by suppressing the CTGF-EGFR signaling pathway. Int J Cancer. 2017;141(8):1614–29.

    Article  CAS  PubMed  Google Scholar 

  9. Braga EA, et al. Molecular mechanisms in clear cell renal cell carcinoma: role of miRNAs and Hypermethylated miRNA genes in crucial oncogenic pathways and processes. Front Genet. 2019;10:320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kasinski AL, Slack FJ. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11(12):849–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mo JS, et al. MicroRNA 452 regulates cell proliferation, cell migration, and angiogenesis in colorectal cancer by suppressing VEGFA expression. Cancers. 2019;11(10):1613.

    Article  CAS  PubMed Central  Google Scholar 

  12. Lu J, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    Article  CAS  PubMed  Google Scholar 

  13. Garzon R, et al. MicroRNA expression and function in cancer. Trends Mol Med. 2006;12(12):580–7.

    Article  CAS  PubMed  Google Scholar 

  14. Mo J-S, et al. MicroRNA 429 regulates mucin gene expression and secretion in murine model of colitis. J Crohns Colitis. 2016;10(7):837–49.

    Article  PubMed  Google Scholar 

  15. Mo J-S, et al. MicroRNA 196B regulates FAS-mediated apoptosis in colorectal cancer cells. Oncotarget. 2015;6(5):2843.

    Article  PubMed  Google Scholar 

  16. Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines—from host defence to tissue homeostasis. Nat Rev Immunol. 2014;14(12):783–95.

    Article  CAS  PubMed  Google Scholar 

  17. Lee S-J, et al. Interleukin-20 promotes migration of bladder cancer cells through ERK-mediated MMP-9 expression leading to NF-kB activation by inducing the up-regulation of p21WAF1 expression. J Biol Chem. 2012;288:5539–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mo J-S, et al. MicroRNA 429 regulates the expression of CHMP5 in the inflammatory colitis and colorectal cancer cells. Inflamm Res. 2018;67(11–12):985–96.

    Article  CAS  PubMed  Google Scholar 

  19. Han S-H, et al. Reduced microRNA 375 in colorectal cancer upregulates metadherin-mediated signaling. World J Gastroenterol. 2019;25(44):6495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pichler M, Calin GA. MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients. Br J Cancer. 2015;113(4):569–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Rooij E, Kauppinen S. Development of micro RNA therapeutics is coming of age. EMBO Mol Med. 2014;6(7):851–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Qiu T, et al. MiR-145, miR-133a and miR-133b inhibit proliferation, migration, invasion and cell cycle progression via targeting transcription factor Sp1 in gastric cancer. FEBS Lett. 2014;588(7):1168–77.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou W, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25(4):501–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fang Y, et al. MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology. 2012;55(6):1852–62.

    Article  CAS  PubMed  Google Scholar 

  25. Itzkowitz SH, Yio X. Inflammation and cancer IV Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol. 2004;287(1):7–17.

    Article  Google Scholar 

  26. Benderska N, et al. miRNA-26b overexpression in ulcerative colitis-associated carcinogenesis. Inflamm Bowel Dis. 2015;21(9):2039–51.

    Article  PubMed  Google Scholar 

  27. Li W, et al. Tumor-suppressive microRNA-452 inhibits migration and invasion of breast cancer cells by directly targeting RAB11A. Oncol Lett. 2017;14(2):2559–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Liu L, et al. Downregulation of miR-452 promotes stem-like traits and tumorigenicity of gliomas. Clin Cancer Res. 2013;19(13):3429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goto Y, et al. Regulation of E3 ubiquitin ligase-1 (WWP1) by microRNA-452 inhibits cancer cell migration and invasion in prostate cancer. Br J Cancer. 2016;114(10):1135–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li R-Z, Wang L-M. RETRACTED ARTICLE: decreased microRNA-452 expression and its prognostic significance in human osteosarcoma. World J Surg Oncol. 2016;14(1):1–8.

    PubMed  PubMed Central  Google Scholar 

  31. Zheng Q, et al. MicroRNA-452 promotes tumorigenesis in hepatocellular carcinoma by targeting cyclin-dependent kinase inhibitor 1B. Mol Cell Biochem. 2014;389(1–2):187–95.

    Article  CAS  PubMed  Google Scholar 

  32. Liu S-G, et al. Differential expression of miRNAs in esophageal cancer tissue. Oncol Lett. 2013;5(5):1639–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Veerla S, et al. MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer. 2009;124(9):2236–42.

    Article  CAS  PubMed  Google Scholar 

  34. Chen J, Caspi RR, Chong WP. IL-20 receptor cytokines in autoimmune diseases. J Leukoc Biol. 2018;104(5):953–9.

    Article  CAS  PubMed  Google Scholar 

  35. Shabgah AG, et al. Interleukin-22 in human inflammatory diseases and viral infections. Autoimmun Rev. 2017;16(12):1209–18.

    Article  CAS  PubMed  Google Scholar 

  36. Kunz S, et al. Interleukin (IL)-19, IL-20 and IL-24 are produced by and act on keratinocytes and are distinct from classical ILs. Exp Dermatol. 2006;15(12):991–1004.

    Article  CAS  PubMed  Google Scholar 

  37. Fonseca-Camarillo G, et al. Expression of interleukin (IL)-19 and IL-24 in inflammatory bowel disease patients: a cross-sectional study. Clin Exp Immunol. 2014;177(1):64–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fonseca-Camarillo G, et al. IL-10—and IL-20—expressing epithelial and inflammatory cells are increased in patients with ulcerative colitis. J Clin Immunol. 2013;33(3):640–8.

    Article  CAS  PubMed  Google Scholar 

  39. Andoh A, et al. Expression of IL-24, an activator of the JAK1/STAT3/SOCS3 cascade, is enhanced in inflammatory bowel disease. J Immunol. 2009;183(1):687–95.

    Article  CAS  PubMed  Google Scholar 

  40. Kiesler P, Fuss IJ, Strober W. Experimental models of inflammatory bowel diseases. Cell Mol Gastroenterol Hepatol. 2015;1(2):154–70.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci. 2018;27(12):1984–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nivarthi H, et al. The ratio of STAT1 to STAT3 expression is a determinant of colorectal cancer growth. Oncotarget. 2016;7(32):51096.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nicholas C, Lesinski GB. The Jak-STAT signal transduction pathway in melanoma, breakthroughs in melanoma research. In: Tanaka Y (Ed.). London: InTech; 2011. pp. 283–306.

  44. Becker C, et al. IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle. 2005;4(2):220–3.

    Article  Google Scholar 

  45. Corvinus FM, et al. Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth. Neoplasia (New York, NY). 2005;7(6):545.

    Article  CAS  Google Scholar 

  46. Tsareva SA, et al. Signal transducer and activator of transcription 3 activation promotes invasive growth of colon carcinomas through matrix metal loproteinase induction. Neoplasia. 2007;9(4):279–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The biospecimens for this study were provided by the Biobank of Wonkwang University Hospital, a member of the National Biobank of Korea, which is supported by the Ministry of Health and Welfare. This research was supported by Wonkwang University in 2020.

Author information

Authors and Affiliations

Authors

Contributions

The authors have made the following declarations about their contributions: Conceived and designed the experiments: SCC. Performed the experiments, analyzed the data and discussion: SL, JSM, GS, and SCC. Contributed to draft and revision of the manuscript: SL, TYC and SCC.

Corresponding author

Correspondence to Soo-Cheon Chae.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving humans were in accordance with the Ethical Standards set by the Committee of Ethical Standards of Wonkwang University, Republic of Korea (WKIRB-201703-BR-011). The animal studies were approved by the Animal Care Committee of the Wonkwang University (WKU17-53).

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamichhane, S., Mo, JS., Sharma, G. et al. MicroRNA 452 regulates IL20RA-mediated JAK1/STAT3 pathway in inflammatory colitis and colorectal cancer. Inflamm. Res. 70, 903–914 (2021). https://doi.org/10.1007/s00011-021-01486-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01486-7

Keywords

Navigation