Skip to main content

Advertisement

Log in

Antibacterial potential of chalcones and its derivatives against Staphylococcus aureus

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Chalcones are natural substances found in the metabolism of several botanical families. Their structure consists of 1,3-diphenyl-2-propen-1-one and they are characterized by having in their chains an α, β-unsaturated carbonyl system, two phenol rings and a three-carbon chain that unites them. In plants, Chalcones are mainly involved in the biosynthesis of flavonoids and isoflavonoids through the phenylalanine derivation. This group of substances has been shown to be a viable alternative for the investigation of its antibacterial potential, considering the numerous biological activities reported and the increase of the microbial resistance that concern global health agencies. Staphylococcus aureus is a bacterium that has stood out for its ability to adapt and develop resistance to a wide variety of drugs. This literature review aimed to highlight recent advances in the use of Chalcones and derivatives as antibacterial agents against S. aureus, focusing on research articles available on the Science Direct, Pub Med and Scopus data platforms in the period 2015–2021. It was constructed informative tables that provided an overview of which types of Chalcones are being studied more (Natural or Synthetic); its chemical name and main Synthesis Methodology. From the analysis of the data, it was observed that the compounds based on Chalcones have great potential in medicinal chemistry as antibacterial agents and that the molecular skeletons of these compounds as well as their derivatives can be easily obtained through substitutions in the A and B rings of Chalcones, in order to obtain the desired bioactivity. It was verified that Chalcones and derivatives are promising agents for combating the multidrug resistance of S. aureus to drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Author (2022)

Fig. 2

Source: Author (2022)

Similar content being viewed by others

Data availability

All data will be available after a reasonable request to the corresponding author.

References

  • Abo-Salem HM, Abdel-aziem A, Islam IE, Yossef MM, El-Sawi ER (2016) Synthesis, antimicrobial activity and molecular docking study of some new N-benzyl and N-benzoyl-3-indolyl heterocycles. Inte J Pharm Pharm Sci 8(9):224–234

    Article  CAS  Google Scholar 

  • Abushaheen MA, MuzaheedFatani AJ, Alosaimi M, Mansy W, George M, Acharya S, Rathod S, Divakar DD, Jhugroo C, Vellappally S, Khan AA, Shaik J, Jhugroo P (2020) Antimicrobial resistance, mechanisms and its clinical significance. Dis Mon 66(6):100971

    Article  Google Scholar 

  • Ajiboye TO, Haliru FZ (2016) Redox and respiratory chain related alterations in the lophirones B and C-mediated bacterial lethality. Microb Pathog 100:95–111. https://doi.org/10.1016/j.micpath.2016.08.027

    Article  CAS  Google Scholar 

  • Aksöz BE, Onurdağ FK, Aksöz E, Özgacar SÖ (2021) Biological activity screening of some hydrazone and chalcone derivatives. Turk Hijyen Ve Deneysel Biyoloji Dergisi 78(2):159–166. https://doi.org/10.5505/TurkHijyen.2020.02439

    Article  Google Scholar 

  • Alam MS, Rahman SMM, Lee DU (2015) Synthesis, biological evaluation, quantitative-SAR and docking studies of novel chalcone derivatives as antibacterial and antioxidant agents. Chem Pap 69(8):1118–1129

    Article  CAS  Google Scholar 

  • Alhage J, Elbitar H, Taha S, Guegan J, Dassouki Z, Vives T, Benvegnu T (2018) Isolation of bioactive compounds from Calicotome villosa stems. Molecules. https://doi.org/10.3390/molecules23040851

    Article  Google Scholar 

  • Alrohily WD, Mahmoud EH, El-Messery SM, Alqurshi A, El-Subbagh H, El-Sayed EH (2019) Antibacterial, antibiofilm and molecular modeling study of some antitumor thiazole based chalcones as a new class of DHFR inhibitors. Microb Pathog 136(August):103674

    Article  CAS  Google Scholar 

  • Alves Borges Leal AL, Silva PT, Rocha MN, Marinho EM, Marinho ES, Marinho MM, Bandeira PN, Nogueira CES, Barreto HM, Teixeira AMR, Santos HS (2021) Potentiating activity of Norfloxacin by synthetic chalcones against NorA overproducing Staphylococcus aureus. Microb Pathog 155(February):104894

    Article  CAS  Google Scholar 

  • Anvisa (2018) Antibióticos: uso indiscriminado deve ser controlado. Disponível em: https://tinyurl.com/y5c25lk7. Acesso em: 12 de de Dez de 2021.

  • AshoK D, Ravi S, Ganesh A, Vijaya Lakshmi B, Adam S, Murthy SDS (2016) Microwave-assisted synthesis and biological evaluation of carbazole-based chalcones, aurones and flavones. Med Chem Res 25(5):909–922

    Article  CAS  Google Scholar 

  • Ashok D, Radhika G, Rao BA, Sarasija V, Jayashree A, Sadanandam P (2018) Synthesis of benzoxazepine derivatives from pyrazole-chalcone via a simple and convenient protocol using basic alumina as solid support. J Chilean Chem Soc 63(2):3983–3987. https://doi.org/10.4067/s0717-97072018000203983

    Article  CAS  Google Scholar 

  • Assef APDC, Neto OCC (2020) Bases moleculares da resistência bacteriana. In: Brasil, Agência Nacional de Vigilância Sanitária. Microbiologia Clínica Para O Controle De Infecção Relacionada à Assistência á Saúde, 1° edn. Brasília, Anvisa, pp. 17–28

  • Babu AK, Selvaraju K (2020) Synthesis, biological evaluation and docking studies of novel chalcone derivatives as antimicrobial agents. Mater Today Proc 48(xxxx):382–386

    Google Scholar 

  • Babu K, Selvi D, Pitchai D (2015) Synthesis and microbial studies of novel 1, 3-thiazine compounds bearing schiff base moiety. Der Pharma Chemica 7(10):89–92

    CAS  Google Scholar 

  • Banoth RK, Thatikonda A (2020) A review on natural chalcones: an update. Int J Pharm Sci Res 11:546–555

    CAS  Google Scholar 

  • Barroso H, Meliço-Silvestre A, Taveira N (2014) Microbiologia médica: fundamentos de microbiologia, conceito básicos da resposta imunológica, princípios do diagnóstico, microbiológico médico e bacteriologia. (LIDEL - Edições Técnicas Lda, Ed.). Lisboa

  • Bassin P, Botha MJ, Garikipati R, Goyal M, Martin L, Shah S (2017) Synthesis and antibacterial activity of benzo[4,5]isothiazolo[2,3-α]pyrazine-6,6-dioxide derivatives. Molecules. https://doi.org/10.3390/molecules22111889

    Article  Google Scholar 

  • Begmatov N, Begmatov N, Li N, Bobakulov K, Numonov K, Aisa HA (2020) The chemical components of Coreopsis tinctoria Nutt. and their antioxidant, antidiabetic and antibacterial activities. Nat Product Res 34(12):1772–1776. https://doi.org/10.1080/14786419.2018.1525377

    Article  CAS  Google Scholar 

  • Bhirud JD, Patil RD, Narkhede HP (2020) Sulfamic acid catalyzed synthesis of new 3,5-[(sub)phenyl]-1H-pyrazole bearing N1-isonicotinoyl: and their pharmacological activity evaluation. Bioorganic Med Chem Lett 30(23):127558. https://doi.org/10.1016/j.bmcl.2020.127558

    Article  CAS  Google Scholar 

  • Bingi C, Emmadi R, Chennapuram M, Poornachandra Y, Ganesh Kumar C, Nanubolu JB, Atmakur K (2015) One-pot catalyst free synthesis of novel kojic acid tagged 2-aryl/alkyl substituted-4H-chromenes and evaluation of their antimicrobial and anti-biofilm activities. Bioorganic Med Chem Lett 25(9):1915–1919. https://doi.org/10.1016/j.bmcl.2015.03.034

    Article  CAS  Google Scholar 

  • Bitencourt HR, Marinho AMR, Filho APSS, Pinheiro JC, Tavares MGC, Almeida O, Farias RAF (2019) Síntese de Chalconas. Processos Químicos e Biotecnológicos—V. 6. https://doi.org/10.36229/978-65-5866-009-5

  • Bocquet L, Sahpaz S, Bonneau N, Beaufay C, Mahieux S, Samaillie J, Roumy V, Jacquin J, Bordage S, Hennebelle T, Chai F, Quetin-Leclercq J, Neut C, Rivière C (2019) Phenolic compounds from humulus lupulus as natural antimicrobial products: New weapons in the fight against methicillin resistant staphylococcus aureus, leishmania mexicana and trypanosoma brucei strains. Molecules 24(6):1–25. https://doi.org/10.3390/molecules24061024

    Article  CAS  Google Scholar 

  • Bonakdar APS, Sadegui A, Aghaei H, Maal KB (2020) Convenient synthesis of novel chalcone and pyrazoline sulfonamide derivatives as potential antibacterial agents. Russ J Bioorg Chem 46(3):371–381

    Article  CAS  Google Scholar 

  • Božić DD, Božić DD, Milenković MT, Ivković BM, Larsen AR, Cirković IB (2015) Inhibitory effect of newly-synthesized chalcones on hemolytic activity of methicillin-resistant Staphylococcus aureus. Polish J Microbiol 64(4):379–382. https://doi.org/10.5604/17331331.1185237

    Article  Google Scholar 

  • Budak Y, Koçyiğit UM, Gürdere MB (2017) Synthesis and investigation of antibacterial activities and carbonic anhydrase and acetyl cholinesterase inhibition profiles of novel 4,5-dihydropyrazol and pyrazolyl-thiazole derivatives containing methanoisoindol-1,3-dion unit. Synth Commun 47(24):2313–2323

    Article  CAS  Google Scholar 

  • Castaño LF, Cuartas V, Bernal A, Insuasty A, Guzman J, Vidal O, Rubio V, Puerto G, Lukáč P, Vimberg V, Balíková-Novtoná G, Vannucci L, Janata J, Quiroga J, Abonia R, Nogueras M, Cobo J, Insuasty B (2019) New chalcone-sulfonamide hybrids exhibiting anticancer and antituberculosis activity. Eur J Med Chem 176:50–60

    Article  Google Scholar 

  • Chiaradia LD (2010) Síntese, caracterização e Estudo da Relação Estrutura-Atividade (REA) de chalconas e de compostos heterocíclicos biologicamente ativos em doenças negligenciadas, hiperglicemia e leucemia. p. 524

  • Chitreddy V, Subbareddy CV, Sundarrajan S, Mohanapriya A, Subashini R, Shanmugam S (2018) Synthesis, antioxidant, antibacterial, solvatochromism and molecular docking studies of indolyl-4H-chromene-phenylprop-2-en-1-one derivatives. J Mol Liq 251:296–307

    Article  Google Scholar 

  • Chowdary Nagendra B, Umashankara M, Dinesh B, Girish K, Baba AR (2019) Development of 5-(Aryl)-3-phenyl-1H-pyrazole derivatives as potent antimicrobial compounds. Asian J Chem 31(1):45–50

    Article  Google Scholar 

  • Chu WC, Bay PY, Yang Z, Cui D, Hua YG, Yang Y, Yang Q, Zhang E, Qin S (2018) Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity. Eur J Med Chem 143:905–921

    Article  CAS  Google Scholar 

  • Costa SS, Viveiros M, Amaral L, Couto I (2013) Multidrug efflux pumps in Staphylococcus aureus: an update. Open Microbiol J 7(1):59–71. https://doi.org/10.2174/1874285801307010059

    Article  Google Scholar 

  • Costa GM, Endo EH, Cortez DAG, Nakamura TU, Nakamura CV, Dias Filho BP (2016) Antimicrobial effects of Piper hispidum extract, fractions and chalcones against Candida albicans and Staphylococcus aureus. J Mycol Med 26(3):217–226

    Article  CAS  Google Scholar 

  • Cuartas V, Robledo SM, Vélez ID, Crespo MDP, Sortino M, Zacchino S, Nogueras M, Cobo J, Upegui Y, Pineda T, Yepes L, Insuast B (2020) New thiazolyl-pyrazoline derivatives bearing nitrogen mustard as potential antimicrobial and antiprotozoal agents. Archiv der Pharmazie 353(5):e1900351

    Article  CAS  Google Scholar 

  • Cuellar JE, Martínez J, Rojano B, Gil JH, Durango D (2020) Chemical composition and antioxidant and antibacterial activity of Platymiscium gracile Benth.: a species threatened by extinction. J King Saud Univ Sci 32(1):702–708

    Article  Google Scholar 

  • Cui Y, Taniguchi S, Kuroda T, Hatano T (2015) Constituents of psoralea corylifolia fruits and their effects on methicillin-resistant Staphylococcus aureus. Molecules 20(7):12500–12511. https://doi.org/10.3390/molecules200712500

    Article  CAS  Google Scholar 

  • Da Silva PT, Xavier JC, Freitas TS, Oliveira MM, Coutinho HDM, Leal ALAB, Barreto HM, Bandeira PN, Nogueira CES, Sena DM (2021) Synthesis, spectroscopic characterization and antibacterial evaluation by chalcones derived of acetophenone isolated from Croton anisodontus Müll. Arg. J Mol Struct 1226:129403

    Article  Google Scholar 

  • Dan W, Dai J (2019) Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2019.111980

    Article  Google Scholar 

  • Dave SS, Rahatgaonkar AM (2016) Syntheses and anti-microbial evaluation of new quinoline scaffold derived pyrimidine derivatives. Arab J Chem 9:S451–S456

    Article  CAS  Google Scholar 

  • Desai S, Sastry VG (2017) Synthesis, antimicrobial and antitubercular activity of some pyrazoline derivatives from chalcones of indane-1,3-dione. Int J Pharm Res 9(1):81–85

    Google Scholar 

  • Desai V, Desai S, Gaonkar SN, Palyekar U, Joshi SD, Dixit SK (2017) Novel quinoxalinyl chalcone hybrid scaffolds as enoyl ACP reductase inhibitors: synthesis, molecular docking and biological evaluation. Bioorg Med Chem Lett 27(10):2174–2180

    Article  CAS  Google Scholar 

  • Díaz-Tielas C, Graña E, Reigosa MJ, Sánchez-Moreiras AM (2016) Biological activities and novel applications of chalcones. Planta Daninha Viçosa-MG 34(3):607–616

    Article  Google Scholar 

  • Divakar MA, Shanmugam S (2017) Live cell imaging of bacterial cells: pyrenoylpyrrole-based fluorescence labeling. Chem Biol Drug Des 90(4):554–560

    Article  Google Scholar 

  • Ducki S, Forreste S, Hadfield JA, Kendall A, Lawrence NJ, McGown AT, Rennison D (1998) Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorg Med Chem Lett 8:1051–1056

    Article  CAS  Google Scholar 

  • El-desoky ESI, Keshk EM, El-Sawi AA, Abozeide MA, Abouzeide LA, Abdel-Rahman H (2018) Synthesis, biological evaluation and in silico molecular docking of novel 1-hydroxy-naphthyl substituted heterocycles. Saudi Pharm J 26(6):852–859

    Article  Google Scholar 

  • El-hashash M, Rizk S, Atta-Allah SR (2015) Synthesis and regioselective reaction of some unsymmetrical heterocyclic chalcone derivatives and spiro heterocyclic compounds as antibacterial agents. Molecules 20(12):22069–22083. https://doi.org/10.3390/molecules201219827

    Article  CAS  Google Scholar 

  • El-Messery SM, Habib EE, Al-Rashood STA, Hassan GS (2018) Synthesis, antimicrobial, anti-biofilm evaluation, and molecular modelling study of new chalcone linked amines derivatives. J Enzyme Inhib Med Chem 33(1):818–832. https://doi.org/10.1080/14756366.2018.1461855

    Article  CAS  Google Scholar 

  • El-Sherief HA, Abuo-Rahma GEA, Shoman ME, Beshr EA, Abdel-Baky RM (2017) Design and synthesis of new coumarin–chalcone/NO hybrids of potential biological activity. Med Chem Res 26(12):3077–3090

    Article  CAS  Google Scholar 

  • Emeri FTAS, Fernanda T, Rosalen PL, Paganini ER, Rocha Garcia MA, Nazare AC, Lazarini JG, Alencar SM, Regasini LO, OrlanSdiardi JC (2019) Antimicrobial activity of nitrochalcone and pentyl caffeate against hospital pathogens results in decreased microbial adhesion and biofilm formation. Biofouling 35(2):129–142. https://doi.org/10.1080/08927014.2019.1574763

    Article  CAS  Google Scholar 

  • Ergüntürk D, Gürdere ME, Budak Y, Ceylan M (2017) Synthesis, characterization, and investigations of antimicrobial activity of 6,6-dimethyl-3-aryl-3′,4′,6,7-tetrahydro-1′H,3H-spiro[benzofuran-2,2′-naphthalene]-1′,4(5H)-dione. Synth Commun 47(16):1501–1506

    Article  Google Scholar 

  • Evranos-Aksöz B, Onurda FK, Özgacar SÖ (2015) Antibacterial, antifungal and antimycobacterial activities of some pyrazoline, hydrazone and chalcone derivatives. Zeitschrift Fur Naturforschung Sect C J Biosci 70(7–8):183–189

    Article  Google Scholar 

  • Evranos-Aksöz B, Onurdağ FK, Özgacar SO (2015) Antibacterial, antifungal and antimycobacterial activities of some pyrazoline, hydrazone and chalcone derivatives. Zeitschrift Fur Naturforschung Sect C J Biosci 70(7–8):183–189. https://doi.org/10.1515/znc-2014-4195

    Article  CAS  Google Scholar 

  • Fandakli S, Kahriman N, Yücel TB, Karaoğlu SA, Yayli N (2018) Biological evaluation and synthesis of new pyrimidine-2(1H)-ol/-thiol derivatives derived from chalcones using the solid phase microwave method. Turkish J Chem 42(2):520–535. https://doi.org/10.3906/kim-1711-9

    Article  CAS  Google Scholar 

  • Farooq S, Ngaini Z (2020) Synthesis, molecular docking and antimicrobial activity of α, β-unsaturated ketone exchange moiety for chalcone and pyrazoline derivatives. Chem Select 5(32):9974–9979

    CAS  Google Scholar 

  • Ferraz CAN, Tintino SR, Teixeira AMR, Bandeira PN, Santos HS, Cruz BG, Nogueira CES, Moura TF, Pereira RLS, Sena Junior DM, Freitas TS, Rocha JE, Coutinho HD (2020) Potentiation of antibiotic activity by chalcone (E)-1-(4′-aminophenyl)-3-(furan-2-yl)-prop-2-en-1-one against gram-positive and gram-negative MDR strains. Microb Pathogenesis 148(June):104453

    Article  CAS  Google Scholar 

  • Ferreira MKA, Fontenelle ROS, Magalhães FEA, Bandeira PNS, Menezes JESA, dos Santos H (2018) Potencial Farmacológico de Chalconas: Uma Breve Revisão. Revista Virtual De Quimica. 10(5):1455–1473

    Google Scholar 

  • Fonseca PS (2012) Síntese e Caracterização de Chalconas e Dichalconas contendo unidades 1,2,3-triazólicas. p. 214

  • Freitas TS, Xavier JC, Pereira RLS, Rocha JE, Muniz DF, Silva PT, Hora JP, Santos HS, Bandeira PN, Nogueira CES, Teixeira AMR, Coutinho HDM (2020) Direct antibacterial and antibiotic resistance modulatory activity of chalcones synthesized from the natural product 2-hydroxy-3,4,6-trimethoxyacetophenone. FEMS Microbiol Lett 367(15):1–8

    Article  Google Scholar 

  • Garcia TR, de Freitas TS, dos Santos HS, Bandeira PN, Julião MSS, Rocha JE, Nogueira CES, Pereira RLS, Barreto ACH, Freire PTC, Coutinho HDM, Teixeira AMR (2020) Structural, vibrational and electrochemical analysis and antibiotic activity study of chalcone (2E)-1-(3ʹ,-methoxy-4ʹ,-hydroxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one. J Mol Struct 1216:128358

    Article  CAS  Google Scholar 

  • Garcia MAR, Theodoro RS, Sardi JCO, Santos MB, Ayusso GM, Pavan FR, Costa AR, Cruz LMR, Rosalen PL, Regasini LO (2021) Design, synthesis and antibacterial activity of chalcones against MSSA and MRSA planktonic cells and biofilms. Química Bioorgânica 116:105279. https://doi.org/10.1016/j.bioorg.2021.105279

    Article  CAS  Google Scholar 

  • Gaur R, Gupta VK, Pal A, Darokar MP, Bhakuni RS, Kumarc B (2015) In vitro and in vivo synergistic interaction of substituted chalcone derivatives with norfloxacin against methicillin resistant Staphylococcus aureus. RSC Adv 5(8):5830–5845

    Article  CAS  Google Scholar 

  • Gibson MZ, Nguyen MA, Zingales SK (2017) Design, synthesis, and evaluation of (2-(pyridinyl)methylene)-1-tetralone chalcones for anticancer and antimicrobial activity. Med Chem. https://doi.org/10.2174/1573406413666171020121244

    Article  Google Scholar 

  • Gładkowski W (2019) Substituted γ-Oxa-ε-lactones. Derived. pp. 1–15

  • Gondru R, Saini R, Vaarla K, Singh S, Sirassu N, Bavantula R, Saxen AK (2018) Synthesis and characterization of chalcone-pyridinium hybrids as potential anti-cancer and anti-microbial agents. Chem Select 3(5):1424–1431. https://doi.org/10.1002/slct.201702971

    Article  CAS  Google Scholar 

  • Gopi C, Sastry VG, Dhanaraju MD (2016) Synthesis and spectroscopic characterisation of novel bioactive molecule of 3-(2-substituted)-1H-indol-3-yl)-1-(thiophen-2yl)prop-2-en-1-one chalcone derivatives as effective anti-oxidant and anti-microbial agents. Beni-Suef Univ J Basic Applied Sci 5(3):236–243

    Google Scholar 

  • Grace D, Fetsch A (2017) Staphylococcus aureus—a foodborne pathogen: Epidemiology, detection, characterization, prevention, and control: an overview. In: Fetsch A (ed) Staphylococcus aureus. Elsevier, Amsterdam, pp 3–8

    Google Scholar 

  • Guido RV, Andricopulo AD, Oliva G (2010) Planejamento de fármacos, biotecnologia e química medicinal: aplicações em doenças infecciosas. Estudos Avançados 24(70):81–98

    Article  Google Scholar 

  • Guo Y et al (2020) Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol 10(March):1–11. https://doi.org/10.3389/fcimb.2020.00107

    Article  Google Scholar 

  • Gupta VK, Gaurb R, Sharma A, Akthera J, Sainia M, Bhakunib RS, Pathania R (2019) A novel bi-functional chalcone inhibits multi-drug resistant Staphylococcus aureus and potentiates the activity of fluoroquinolones. Bioorg Chem 83(August 2018):214–225

    Article  CAS  Google Scholar 

  • Henry EJ, Bird SJ, Gowland P, Collins M, Cassella JP (2020) Ferrocenyl chalcone derivatives as possible antimicrobial agents. J Antibiotics 73(5):299–308. https://doi.org/10.1038/s41429-020-0280-y

    Article  CAS  Google Scholar 

  • Himangini D, Pathak DP (2016) Synthesis, characterization and in vitro antibacterial activity of new chalcones linked via coumarin ring. Der Pharma Chemica 8(15):112–115

    CAS  Google Scholar 

  • Hu Y et al (2021) Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus. Eur J Med Chem 222:113628

    Article  CAS  Google Scholar 

  • Husain A et al (2015) Studies on 1,1′-(4,6-dihydroxy-1,3-phenylene)diethanone based bischalcones and flavones. World J Pharm Sci 7(8):117–121

    Google Scholar 

  • Ibrahim TS, Almalki AJ, Moustafa AH, Allam RM, Abuo-Rahma GEA, El-Subbagh HI, Mohamed MFA (2021) Novel 1,2,4-oxadiazole-chalcone/oxime hybrids as potential antibacterial DNA gyrase inhibitors: design, synthesis, ADMET prediction and molecular docking study. Bioorg Chem 111(April):104885

    Article  CAS  Google Scholar 

  • Jang S (2016) Multidrug efflux pumps in Staphylococcus aureus and their clinical implications. J Microbiol 54(1):1–8. https://doi.org/10.1007/s12275-016-5159-z

    Article  CAS  Google Scholar 

  • Jayaramu PK, Maralihallia RR (2015) Synthesis and in vitro biological activities of chalcones and their heterocyclic derivatives. Der Pharma Chemica 7(8):30–35

    CAS  Google Scholar 

  • Joanna Kozłowska J, Potaniec B, Baczyńska D, Żarowska B, Anioł M (2019) Synthesis and biological evaluation of novel aminochalcones as potential anticancer and antimicrobial agents. Molecules 24(22):1–18. https://doi.org/10.3390/molecules24224129

    Article  CAS  Google Scholar 

  • Johnson J, Yardily A (2021) Spectral, modeling and biological studies on a novel (E)-3-(3-bromo-4-methoxyphenyl)-1-(thiazol-2-yl)prop-2-en-1-one and some bivalent metal(II) complexes. J Mol Struct 1244:130991

    Article  CAS  Google Scholar 

  • Joray MB, Trucco LD, González ML, Napal GND, Palacios SM, Bocco JL, Carpinella M (2015) Antibacterial and cytotoxic activity of compounds isolated from Flourensia oolepis. Evid-Based Complement Altern Med 2015:1–11

    Article  Google Scholar 

  • Kalaskar MG, Surana SJ (2012) Pharmacognostic and phytochemical studies on Ficus Microcarpa L. fil. Anc Sci Life. 32(2):107–111. https://doi.org/10.4103/0257.7941.118550

    Article  Google Scholar 

  • Kalenić S (2012) The importance of methicillin-resistant Staphylococcus aureus in human medicine. Med Sci 37(November):61–72

    Google Scholar 

  • Kandaswamy N (2019) Synthesis, characterisation and antimicrobial evaluation of chalcone coupled biscoumarin copolyesters. Macromol Res. https://doi.org/10.1007/s13233-019-7082-8

    Article  Google Scholar 

  • Kant R, Kumar D, Agarwal D, Gupta RD, Tilak R, Awasthi SK, Agarwal A (2016) Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities, vol 113. Elsevier Ltd, Amsterdam. https://doi.org/10.1016/j.ejmech.2016.02.041

    Book  Google Scholar 

  • Kapkoti DS, Gupta VK, Darokar MP, Bhakuni RS (2016) Glabridin-chalcone hybrid molecules: drug resistance reversal agent against clinical isolates of methicillin-resistant Staphylococcus aureus. MedChemComm 7(4):693–705

    Article  CAS  Google Scholar 

  • Kaushik R, Chand M, Jain SC (2018) Synthesis and antibacterial evaluation of nitrogen containing novel heterocyclic chalcones. Synthetic Commun 48(11):1308–1315. https://doi.org/10.1080/00397911.2018.1440602

    Article  CAS  Google Scholar 

  • Khayyat SA, Saddiq AA (2015) Photochemical and antimicrobial studies of cinnamaldehyde and its bioactive derivatives. Asian J Chem 27(8):3023–3027

    Article  CAS  Google Scholar 

  • Killeen DP, Larsen L, Dayan FE, Gordon KC, Perry NB, Klink JWV (2016) Nortriketones: antimicrobial trimethylated acylphloroglucinols from Mānuka (Leptospermum scoparium). J Nat Prod 79(3):564–569

    Article  CAS  Google Scholar 

  • Kocyigit UM, Budak Y, Gürdere MB, Tekin S, Köprülü TK, Ertürk F, Özcan K, Gülçin I, Ceylan M (2017) Synthesis, characterization, anticancer, antimicrobial and carbonic anhydrase inhibition profiles of novel (3aR,4S,7R,7aS)-2-(4-((E)-3-(3-aryl)acryloyl) phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione derivatives. Bioorg Chem 70:118–125

    Article  CAS  Google Scholar 

  • Konidala SK, Dandunga RCSR, Kola PK (2021) Design, multistep synthesis and in-vitro antimicrobial and antioxidant screening of coumarin clubbed chalcone hybrids through molecular hybridization approach. Arab J Chem 14(6):103154

    Article  CAS  Google Scholar 

  • Koudokpon H, Armstrong N, Dougnon TV, Fah L, Hounsa E, Bankolé HS, Loko F, Chabrière E, Rolai JM (2018) Antibacterial activity of chalcone and dihydrochalcone compounds from Uvaria chamae roots against multidrug-resistant bacteria. BioMed Res Int. https://doi.org/10.1155/2018/1453173

    Article  Google Scholar 

  • Kumar R, Lu Y, Elliott AG, Kavanagh AM, Cooper MA, Davis RA, Rohan A (2016) Semi-synthesis and NMR spectral assignments of flavonoid and chalcone derivatives. Magnetic Resonance Chem 54(11):880–886. https://doi.org/10.1002/mrc.4482

    Article  CAS  Google Scholar 

  • Kumar P, Kumar A, Pinto JS, Bhashini AG (2017a) Synthesis and biological evaluation of pyrimidine derivatives via pyrrolyl chalcones. Res J Pharm Technol 10(5):1392–1394

    Article  Google Scholar 

  • Kumar P, Kumar A, Deeksha S, Nireeksha G, D’Souza S (2017b) Synthesis and antimicrobial evaluation of different substituted phenylpropenone pyrrolyl chalcones. Res J Pharm Technol 10(5):1426–1428

    Article  Google Scholar 

  • Kumari S, Paliwal SK, Chauhan R (2018) An improved protocol for the synthesis of chalcones containing pyrazole with potential antimicrobial and antioxidant activity. Curr Bioact Compd 14(1):39–47

    Article  CAS  Google Scholar 

  • Kwesiga G, Kelling A, Kersting S, Sperlich E, Nickisch-Rosenegk MV, Schmidt B (2020) Total syntheses of prenylated isoflavones from Erythrina sacleuxii and their antibacterial activity: 5-Deoxy-3′-prenylbiochanin A and Erysubin F. J Nat Prod 83(11):3445–3453. https://doi.org/10.1021/acs.jnatprod.0c00932

    Article  CAS  Google Scholar 

  • Labrière C, Gong H, Finlay BB, Reiner NE, Young RN (2017) Further investigation of inhibitors of MRSA pyruvate kinase: towards the conception of novel antimicrobial agents. Eur J Med Chem 125:1–13

    Article  Google Scholar 

  • Lagu SB, Yejella RP, Bhandare RR, Shaik AB (2020) Design, synthesis, and antibacterial and antifungal activities of novel trifluoromethyl and trifluoromethoxy substituted chalcone derivatives. Pharmaceuticals 13(11):1–16

    Article  Google Scholar 

  • Lin S, Chen Y, Li H, Liu J, Liu S (2020) Shouping. Design, synthesis, and evaluation of amphiphilic sofalcone derivatives as potent Gram-positive antibacterial agents. Eur J Med Chem 202:112596. https://doi.org/10.1016/j.ejmech.2020.112596

    Article  CAS  Google Scholar 

  • Lindoso JAL, Lindoso AABP (2009) Neglected tropical diseases in Brazil. Rev Inst Med Trop Sao Paulo 51:247–253

    Article  Google Scholar 

  • Liu Y, Jiao S, Yin D, Hong X, Xiaoming Y, Qianyu Q, Yang Z (2018) Ferrocenyl chalcone-based Schiff bases and their metal complexes: highly efficient, solvent-free synthesis, characterization, biological research. J Organometallic Chem 856:27–33

    Article  CAS  Google Scholar 

  • Liu Y, Yang L, Yin D, Dang Y, Yang L, Zou Q, Li J, Sun J (2019) Solvent-free synthesis, characterization, biological activity of schiff bases and their metal (II) complexes derived from ferrocenyl chalcone. J Organomet Chem 899:120903

    Article  CAS  Google Scholar 

  • Lokeshwari D, Mahadeva S, Kumar AD, Srinivasan B, Shivalingegowda N, Neratur KL, Kumar KA (2017) Synthesis of novel 2-pyrazoline analogues with potent anti-inflammatory effect mediated by inhibition of phospholipase A2: Crystallographic, in silico docking and QSAR analysis. Bioorg Med Chem Lett 27(16):3806–3811

    Article  CAS  Google Scholar 

  • Loureiro RJ, Roque F, Rodrigues AT, Herdeiro MT, Ramalheira E (2016) O uso de antibióticos e as resistências bacterianas: breves notas sobre a sua evolução. Revista Portuguesa De Saúde Pública 34(1):77–84. https://doi.org/10.1016/j.rpsp.2015.11.003

    Article  Google Scholar 

  • Mahapatra DK, Bharti SK, Asati V (2015) Chalcone scaffolds as antiinfective agents: structural and molecular target perspectives. Eur J Med Chem 101:496–524

    Article  CAS  Google Scholar 

  • Mahmoodi NO, Zeydi MM, Mamaghani M, Monyazeri N (2017) Synthesis and antibacterial evaluation of several novel tripod pyrazoline with triazine core (TPTC) compounds. Res Chem Intermed 43(4):2641–2651

    Article  CAS  Google Scholar 

  • Mariani R, Suganda AG, Sukandar EY (2016) Drug-drug interactions between griseofulvinand a new prenylated chalcone from elatostema parasiticum and its antibacterial activity nortriptylineat binding sites of bovine serum albumin. Pharmacologyonline 1:2016

    Google Scholar 

  • Marino PA (2014) Estudo de chalconas como antibacterianos potenciais: síntese, avaliação da ação antibacteriana e das propriedades físico-químicas, pp. 1–98

  • Matos S, Vazquez-Rodriguez E, Uriarte L (2015) Potential pharmacological uses of chalcones: a patent review (from June 2011–2014). Expert Opin Therap Patents. 25:351–366

    Article  CAS  Google Scholar 

  • Mazimba O (2015) Antimicrobial activities of heterocycles derived from thienylchalcones. J King Saud Univ Sci 27(1):42–48

    Article  Google Scholar 

  • Meier D, Hernández MV, Van Geelen L, Muharini R, Proksch P, Bandow JE, Kalscheuer R (2019) The plant-derived chalcone Xanthoangelol targets the membrane of Gram-positive bacteria. Bioorg Med Chem 27(23):115151

    Article  CAS  Google Scholar 

  • Mendes J (2010) Resistência Antibiótica no Staphylococcus aureus; da Investigação Básica à Prática Clínica. Revista Portuguesa De Medicina Intensiva 17(1):11–15

    Google Scholar 

  • Mishra VK, Mishra M, Kashaw V, Kashaw SK (2017) Synthesis of 1,3,5-trisubstituted pyrazolines as potential antimalarial and antimicrobial agents. Bioorg Med Chem 25(6):1949–1962

    Article  CAS  Google Scholar 

  • Moreno A, Cuello S, Nuño G, Sayago J (2015) Anti-inflammatory, antioxidant and antimicrobial activity characterization and toxicity studies of flowers of “Jarilla”, a medicinal shrub from Argentina. Nat Prod Commun 10(6):4–7. https://doi.org/10.1177/1934578X1501000648

    Article  Google Scholar 

  • Muškinja JM, Burmudžija A, Ratković Z, Ranković B, Kosanić M, Bogdanović G, Novaković S (2016) Ferrocenyl chalcones with O-alkylated vanillins: synthesis, spectral characterization, microbiological evaluation, and single-crystal X-ray analysis. Med Chem Res 25(9):1744–1753

    Article  Google Scholar 

  • Nagwanshi R, Bakhru M, Jain S (2012) Photodimerization of heteroaryl chalcones: comparative antimicrobial activities of chalcones and their photoproducts. Med Chem Res 21(8):1587–1596

    Article  CAS  Google Scholar 

  • Narender T, Reddy KP (2007) A simple and highly efficient method for the synthesis of chalcones by using borontrifluoride-etherate. Tetrahedron Lett 48(18):3177–3180. https://doi.org/10.1016/j.tetlet.2007.03.054

    Article  CAS  Google Scholar 

  • Neill JO (2016) Antimicrobial resistance: tackling a crisis for the health and wealth of nations The Review on Antimicrobial Resistance Chaired

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661

    Article  CAS  Google Scholar 

  • Nisa S, Yusuf M (2020) Synthetic and antimicrobial studies of N-substituted-pyrazoline-based new bisheterocycles. J Heterocycl Chem 57(4):2024–2036

    Article  CAS  Google Scholar 

  • Nowakowska Z (2007) A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 42:125

    Article  CAS  Google Scholar 

  • Nowakowska LJO (2016) Antimicrobial Resistance: tackling a crisis for the health and wealth of nations The Review on Antimicrobial Resistance Chaired

  • Nuño G, Alberto MR, Arena ME, Zampini IC, Isla MI (2018) Effect of Zuccagnia punctata Cav (Fabaceae) extract on pro-inflammatory enzymes and on planktonic cells and biofilm from Staphylococcus aureus, Toxicity studies. Saudi J Biol Sci 25(8):1713–1719

    Article  Google Scholar 

  • Oliveira M, Pereira K, Zamberlam C (2020) Resistência Bacteriana Pelo Uso Indiscriminado De Antibióticos: Uma Questão De Saúde Pública. Revista Ibero- Americana de Humanidades, Ciências e Educação- REASE, pp 183–201

    Google Scholar 

  • Omosa LK, Midiwo JO, Mbaveng AT, Tankeo SB, Seukep JA, Voukeng IK, Dzotam JK, Isemeki J, Derese S, Omolle RA, Efferth T, Kuete V (2016) Antibacterial activities and structure–activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes. Springerplus 5(1):1–15. https://doi.org/10.1186/s40064-016-2599-1

    Article  CAS  Google Scholar 

  • Patel C, Bassin JP, Scott M, Flye J, Hunter AP, Martin L, Goyal M (2016) Synthesis and antimicrobial activity of 1,2-benzothiazine derivatives. Molecules 21(7):1–16

    Article  Google Scholar 

  • Patel D, Kumari P, Patel NB (2017) Synthesis and biological evaluation of coumarin based isoxazoles, pyrimidinthiones and pyrimidin-2-ones. Arab J Chem 10:S3990–S4001

    Article  CAS  Google Scholar 

  • Patil VP, Barragán E, Patil S, Patil S, Bugarin A (2016) Direct synthesis and antimicrobial evaluation of structurally complex chalcones. ChemistrySelect 1(13):3647–3650

    Article  CAS  Google Scholar 

  • Pereira VJ, Kaplan MAC (2013) The high bioactivity of Artocarpus: an exotic genus. Floresta Ambient. https://doi.org/10.4322/floram.2012.075

    Article  Google Scholar 

  • Pola S, Banoth KK, Sankaranarayanan M, Ummani R, Garlapati A (2020) Design, synthesis, in silico studies, and evaluation of novel chalcones and their pyrazoline derivatives for antibacterial and antitubercular activities. Med Chem Res 29:1819–1835

    Article  CAS  Google Scholar 

  • Prakash G, Boopathy M, Selvam R, Kumar SJ, Subramanian K (2018) The effect of anthracene-based chalcone derivatives in the resazurin dye reduction assay mechanisms for the investigation of Gram-positive and Gram-negative bacterial and fungal infection. New J Chemi 42(2):1037–1045. https://doi.org/10.1039/c7nj04125j

    Article  CAS  Google Scholar 

  • Prasad S, Francis SM, Krishnan S, Bharathin P (2018) Synthesis, spectroscopic studies, antibacterial activity, and colorimetric evaluation of the time-killing assay for newly synthesized chalcones using resazurin. Pharm Chem J 52(6):518–525. https://doi.org/10.1007/s11094-018-1852-z

    Article  CAS  Google Scholar 

  • Prasad S, Radhakrishna V, Ravi TK (2019) Synthesis, spectroscopic and antibacterial studies of some schiff bases of 4-(4-bromophenyl)-6-(4-chlorophenyl)-2-aminopyrimidine. Arab J Chem 12(8):3943–3947

    Article  CAS  Google Scholar 

  • Prasch S, Bucar F (2015) Plant derived inhibitors of bacterial efflux pumps: an update. Phytochem Rev 14(6):961–974. https://doi.org/10.1007/s11101-015-9436-y

    Article  CAS  Google Scholar 

  • Purrello SM, Daum RS, Edwards GFS, Lina G, Lindsay J, Peters G, Stefani S (2014) Meticillin-resistant Staphylococcus aureus (MRSA) update: new insights into bacterial adaptation and therapeutic targets. J Global Antimicrobial Resistance 2(2):61–69. https://doi.org/10.1016/j.jgar.2014.02.003

    Article  CAS  Google Scholar 

  • Raju GN, Suresh PV, Nadendla RR, Anusha K (2015) Synthesis, characterization and antimicrobial evaluation of isoxazole derivatives. Der Pharma Chemica 7(6):346–352

    CAS  Google Scholar 

  • Ramírez-Prada J, Robledo SM, Vélez ID, Crespo MP, Quiroga J, Abonia R, Montoya A, Svetaz L, Zacchino S, Insuasty B (2017) Synthesis of novel quinoline–based 4,5–dihydro–1H–pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur J Med Chem 131:237–254

    Article  Google Scholar 

  • Rao M, Padyana S, Dipin KM, Kumar S, Nayak BB, Varela MF (2018) Antimicrobial compounds of plant origin as efflux pump inhibitors: new avenues for controlling multidrug resistant pathogens. J Antimicrob Agents 04(01):1–6. https://doi.org/10.4172/2472-1212.1000159

    Article  Google Scholar 

  • Rashid HU, Xu Y, Ahmad N, Muhammad Y, Wang LS (2019) Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear fator kb activities. Bioorg Chem. 87:335–365

    Article  Google Scholar 

  • Reddy POV, Hridhaya M, Nikhilb K, Khan S, Jha PN, Shah K, Kumar D (2018) Synthesis and investigations into the anticancer and antibacterial activity studies of β-carboline chalcones and their bromide salts. Bioorg Med Chem Lett 28(8):1278–1282. https://doi.org/10.1016/j.bmcl.2018.03.033

    Article  CAS  Google Scholar 

  • Rees KA, Bermudez C, Edwards DJ, Elliott AG, Ripen JE, Seta C, Huang JX, Cooper MA, Fraser JA, Yeo TC, Butler MS (2015) Flemingin-type prenylated chalcones from the sarawak rainforest plant Desmodium congestum. J Nat Prod 78(8):2141–2144. https://doi.org/10.1021/acs.jnatprod.5b00410

    Article  CAS  Google Scholar 

  • Rezende-Júnior LM, Andrade LMS, Leal ALAB, Mesquita ABS, Santos ALPA, Neto JSL, Siqueira-Júnior JP, Nogueira CES, Kaatz GW, Coutinho HDM, Martins N, Rocha CQ, Barreto HM (2020) Chalcones isolated from Arrabidaea brachypoda flowers as inhibitors of nora and mepa multidrug efflux pumps of Staphylococcus aureus. Antibiotics 9(6):1–12. https://doi.org/10.3390/antibiotics9060351

    Article  CAS  Google Scholar 

  • Rocha JE, Freitas TS, Xavier JC, Pereira RLS, Pereira Junior FN, Nogueira CES, Marinho MM, Bandeira PN, Oliveira MR, Marinho ES, Teixeira AMR, Santos HS, Coutinho HDM (2021) Antibacterial and antibiotic modifying activity, ADMET study and molecular docking of synthetic chalcone (E)-1-(2-hydroxyphenyl)-3-(2,4-dimethoxy-3-methylphenyl)prop-2-en-1-one in strains of Staphylococcus aureus carrying NorA and MepA efflux pumps. Biomed Pharmacotherapy 140(May):111768

    Article  CAS  Google Scholar 

  • Rossiter SE, Fletcher MH, Wuest WM (2017) Natural products as platforms to overcome antibiotic resistance. Chem Rev 117:12415–12474

    Article  CAS  Google Scholar 

  • Sadgir NV, Dhonnar SL, Jagdale BS, Sawant AB (2020) Synthesis, spectroscopic characterization, XRD crystal structure, DFT and antimicrobial study of (2E)-3-(2,6-dichlorophenyl)-1-(4-methoxyphenyl)-prop-2-en-1-one. SN Applied Sci 2(8):1–12

    Article  Google Scholar 

  • Saleh MY, Ayoub AI, Hammady AO (2020) Synthesis biological studies of some new heterocyclic compound derived from 2-chloro-3-formyl quinoline and 4-(benzyl sulfonyl) acetophenone. Egypt J Chem 63(12):4769–4776

    Google Scholar 

  • Sanad SMH, Ahmed AAM, Mekky AEM (2020) Efficient synthesis and molecular docking of novel antibacterial pyrimidines and their related fused heterocyclic derivatives. J Heterocycl Chem 57(2):590–605

    Article  CAS  Google Scholar 

  • Santosh R, Selvam MK, Kanekar SU, Nagaraja GK (2018) Synthesis, characterization, antibacterial and antioxidant studies of some heterocyclic compounds from triazole-linked chalcone derivatives. Chem Select 3(23):6338–6343. https://doi.org/10.1002/slct.201800905

    Article  CAS  Google Scholar 

  • Santra S, Jat B, Santra PK (2018) Synthesis and antimicrobial activities of chalcones and indole drived from acetyl pyridines. Asian J Chem 30(4):883–888. https://doi.org/10.14233/ajchem.2018.21124

    Article  CAS  Google Scholar 

  • Sashidhara KV, Rao KB, Kushwaha P, Modukuri RK, Singh P, Soni I, Shukla PK, Chopra S, Pasupuleti M (2015) Novel chalcone-thiazole hybrids as potent inhibitors of drug resistant Staphylococcus aureus. ACS Med Chem Lett 6(7):809–813. https://doi.org/10.1021/acsmedchemlett.5b00169

    Article  CAS  Google Scholar 

  • Sayed M, El-Dean AMK, Ahmed M, Hassanein R (2018) Synthesis, characterization, and screening for anti-inflammatory and antimicrobial activity of novel indolyl chalcone derivatives. J Heterocyclic Chem 55(5):1166–1175. https://doi.org/10.1002/jhet.3149

    Article  CAS  Google Scholar 

  • Seo J, Kim J, Shim J, Yoon G, Bang M, Bae C, Lee K, Park D, Cho S (2016) HPLC analysis, optimization of extraction conditions and biological evaluation of corylopsis coreana uyeki flos. Molecules 21(1):1–13. https://doi.org/10.3390/molecules21010094

    Article  CAS  Google Scholar 

  • Setyawati A, Wahyuningsih T, Purwono B (2017) Syntheses of novel pyrazolines as antibacterial agents from natural product vanillin. Asian J Chem 29(2):454–456

    Article  CAS  Google Scholar 

  • Seukep AJ, Kuete V, Nahar L, Sarker SD, Guo M (2020) Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. Elsevier Ltd, Amsterdam. https://doi.org/10.1016/j.jpha.2019.11.002

    Book  Google Scholar 

  • Shankar B, Jalapathi P, Ramesh M, Kumar AK, Ragavender M, Bharath G (2016) Synthesis, antimicrobial evaluation, and docking studies of some novel benzofuran based analogues of chalcone and 1,4-benzodiazepine. Russ J Gen Chem 86(7):1711–1721

    Article  CAS  Google Scholar 

  • Shimokoriyama M (1962) Em Flavanones chalcones and aurones. MacMillan Company, New York (Geissman, T. A. ed)

    Google Scholar 

  • Shinde RS, Dake SA, Pawar RP (2019) Design, synthesis and antimicrobial activity of some triazine chalcone derivatives. Anti-Infect Agents 18(4):332–338

    Article  Google Scholar 

  • Shinde RA, Adole VA, Jagdale BS, Desale BS (2021) Synthesis, antibacterial and computational studies of Halo Chalcone hybrids from 1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)ethan-1-one. J Indian Chem Soc 98(4):100051

    Article  CAS  Google Scholar 

  • Silva DACM (2016) Instituto Superior De Ciências Da Saúde Egas Moniz Mestrado Integrado em Ciências Farmacêuticas. Epidemiologia molecular de estirpes bacterianas multirresistentes: Acinetobacter baumannii, Pseudomonas aeruginosa e Staphylococcus aureus, pp. 1–98

  • Simard F, Gauthier C, Chiasson E, Lavoie S, Mshvildadze V, Legault J, Pichette A (2015) Antibacterial Balsacones J-M, hydroxycinnamoylated dihydrochalcones from Populus balsamifera Buds. J Nat Prod 78(5):1147–1153

    Article  CAS  Google Scholar 

  • Siqueira MMR, Freire PTC, Cruz BG, Freitas TS, Bandeira PN, Santos HS, Nogueira CES, Teixeira AMR, Pereira RLS, Xavier JC, Campina FF, Barbosa CRS, Neto JBA, Silva MMC, Siqueira-Júnior JP, Coutinho HDM (2021) Aminophenyl chalcones potentiating antibiotic activity and inhibiting bacterial efflux pump. Eur J Pharm Sci. https://doi.org/10.1016/j.ejps.2020.105695

    Article  Google Scholar 

  • Sivasankerreddy L, Nagamani B, Rajkumar T, Babu MS, Subbaiah NY, Harika MS, Nageswarao R (2018) Novel diazenyl containing phenyl styryl ketone derivatives as antimicrobial agents. Anti-Infect Agents 17(1):28–38. https://doi.org/10.2174/2211352516666180927111546

    Article  CAS  Google Scholar 

  • Solmaz A, İlter Z, Kaya İ (2021) Synthesis, characterization and thermal properties of chalcone methacrylamide polymers containing methoxy group in side chain. J Polym Res. https://doi.org/10.1007/s10965-021-02592-0

    Article  Google Scholar 

  • Soltani SS, Farni SMF, Fouromadi A (2021) Síntese e atividade antibacteriana de novas chalconas com uma porção imida-zo[1,2-a]piridina. Biologia Química Atual 15(2):163–170. https://doi.org/10.2174/2212796815666210223110208

    Article  CAS  Google Scholar 

  • Souza LFS (2014) Síntese de carboxi-Chalconas com ação inibitória de proteínas tirosina fosfatase de Mycobacterium tuberculosis, p. 136

  • Stompor M, Zarowska B (2016) Antimicrobial activity of xanthohumol and its selected structural analogues. Molecules. https://doi.org/10.3390/molecules21050608

    Article  Google Scholar 

  • Syed Aly MRE, Saad HA, Mohamed MAM (2015) Click reaction based synthesis, antimicrobial, and cytotoxic activities of new 1,2,3-triazoles. Bioorg Med Chem Lett 25(14):2824–2830. https://doi.org/10.1016/j.bmcl.2015.04.096

    Article  CAS  Google Scholar 

  • Teixeira AMR, Santos HS, Julião M, Bandeira PN (2019) Structural, spectroscopic and microbiological characterization of the chalcone 2E-1-(2ʹ-hydroxy-3ʹ,4ʹ,6ʹ-trimethoxyphenyl)-3-(phenyl)-prop-2-en-1-one derived from the natural product 2-hydroxy-3,4,6-trimethoxyacetophenone. J Mol Struct 1179:739–748

    Article  CAS  Google Scholar 

  • Thanigaimani K, Arshad S, Khalib NC, Razak IA, Arunagiri C, Subashini C, Sulaiman SF, Hashim NS, Ooi KL (2015) A new chalcone structure of (E)-1-(4-Bromophenyl)-3-(napthalen-2-yl)prop-2-en-1-one: Synthesis, structural characterizations, quantum chemical investigations and biological evaluations. Spectrochim Acta Part A Mol and Biomol Spectrosc 149:90–102

    Article  CAS  Google Scholar 

  • Twinkle AR, Leenaraj DR, Ratkovic Z, Arunsasi BS, Bright KC, Reshma R (2020) Ferrocenyl chalcone derivative (E)-3-(2-methylpyrimidin-5-yl)-1-ferroceynlprop-2-en-1-one: synthesis, structural analysis, docking study and their antibacterial evaluation. J Mol Struct 1210:128049

    Article  CAS  Google Scholar 

  • Ud Din Z, Serrano FG, Ademi K, Sousa CP, Deflon VM, Maia PIS, Rodrigues Filho E (2017) Crystal structures, in-silico study and anti-microbial potential of synthetic monocarbonyl curcuminoids. J Mol Struct 1144:529–534

    Article  CAS  Google Scholar 

  • Vásquez-Martínez YA, Osorio ME, San Martín DA, Carvajal MA, Vergara AP, Sanchez E, Raimondi M, Zacchino SA, Mascayano C, Torrent C, Cabezas F, Mejias S, Montoyaf M, Martín MCA et al (2019) Antimicrobial, anti-inflammatory and antioxidant activities of polyoxygenated chalcones. J Braz Chem Soc 30(2):286–304. https://doi.org/10.21577/0103-5053.20180177

    Article  CAS  Google Scholar 

  • Wei Z, Chi K, Yu Z, Liu H, Sun L, Zheng C, Piao H (2016) Synthesis and biological evaluation of chalcone derivatives containing aminoguanidine or acylhydrazone moieties. Bioorg Med Chem Lett 26(24):5920–5925

    Article  CAS  Google Scholar 

  • Who. World Health Organization (2021) Traditional, Complementary and Integrative Medicine. http://www.who.int/medicines/areas/traditional/definitions/en/. Accessed 13 Sep 2022

  • Winter C (2016) Catalisadores heterogêneos para produção de chalconas: reação de condensação de Claisen-Schmidt, p. 162

  • Wright GD (2017) Opportunities for natural products in 21st century antibiotic discovery. Nat Prod Rep 34:694–701

    Article  CAS  Google Scholar 

  • Xavier JC, de Almeida-Neto FWQ, Rocha JE, Freitas TS, Freitas PR, de Araújo ACJ, da Silva PT, Nogueira CES, Bandeira PN, Marinho MM, Marinho ES, Kumar N, Barreto ACH, Coutinho HDM, dos Julião MSS, Santos HS, Teixeira AMR (2021) Spectroscopic analysis by NMR, FT-Raman, ATR-FTIR, and UV-Vis, evaluation of antimicrobial activity, and in silico studies of chalcones derived from 2-hydroxyacetophenone. J Mol Struct 1241:130647

    Article  CAS  Google Scholar 

  • Xie C, Zhang S, Zhang W, Wu C, Yong C, Sun Y, Zeng Y, Zhang Q, Huang Z, Chen T, Zhang Y (2020) Synthesis, biological activities, and docking study of novel chalcone-pleuromutilin derivatives. Chem Biol Drug Des 96(2):836–849

    Article  CAS  Google Scholar 

  • Yusuf M, Solanki I (2017) Synthesis and antimicrobial studies of furyl based new bispyrazolines linked via aliphatic chains. J Saudi Chem Soc 21(3):251–261

    Article  CAS  Google Scholar 

  • Yusuf M, Kaur A, Abid M (2017) Synthesis, antimicrobial studies, and docking simulations of new bis(4,5-dihydropyrazole) derivatives. J Heterocycl Chem 54(4):2536–2547

    Article  CAS  Google Scholar 

  • Zainuri DA, Arshad S, Khalib NC, Razaki IA, Pillai RR, Sulaiman SF, Hashim NS, Ooi KL, Armaković S, Armaković SJ, Panicker CY, Alsenoy CV (2017) Synthesis, XRD crystal structure, spectroscopic characterization (FT-IR, 1H and 13C NMR), DFT studies, chemical reactivity and bond dissociation energy studies using molecular dynamics simulations and evaluation of antimicrobial and antioxidant activities of a novel chalcone derivative, (E)-1-(4-bromophenyl)-3-(4-iodophenyl)prop-2-en-1-one. J Mol Struct 1128:520–533

    Article  CAS  Google Scholar 

  • Zaki MA, Nanayakkara NPD, Hetta MH, Jacob MR, Khan SI, Mohammed R, Ibrahim MA, Coleman C, Fronczek FR, Ferreira D, Muhammad I (2016) Bioactive formylated flavonoids from Eugenia rigida: isolation, synthesis, and X-ray crystallography. J Nat Prod 79(9):2341–2349. https://doi.org/10.1021/acs.jnatprod.6b00474

    Article  CAS  Google Scholar 

  • Zhang Z, Xie Y, Wang Y, Lin Z, Wang L, Li G (2017) Toxicities of monoterpenes against housefly, Musca domestica L. (Diptera: Muscidae). Environ Sci Pollut Res 24(31):24708–24713. https://doi.org/10.1007/s11356-017-0219-4

    Article  CAS  Google Scholar 

  • Zhang M, Prior AM, Maddox MM, Shen W, Hevener KE, Bruhn DF, Lee RB, Singh AP, Reinicke J, Simmons CJ, Hurdle JG, Lee RE, Sun D (2018a) Pharmacophore modeling, synthesis, and antibacterial evaluation of chalcones and derivatives. ACS Omega 3(12):18343–18360. https://doi.org/10.1021/acsomega.8b03174

    Article  CAS  Google Scholar 

  • Zhang T, Yu Z, Jin X, Li M, Sun LP, Zheng C, Piao H (2018b) Synthesis and evaluation of the antibacterial activities of aryl substituted dihydrotriazine derivatives. Bioorg Med Chem Lett 28(9):1657–1662. https://doi.org/10.1016/j.bmcl.2018.03.037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the State university of Ceará—UECE; Regional University of Cariri—URCA Formatting of funding sources. Fundacąõ Cearense de Apoio ao Desenvolvimento Cientı´fico e Tecnolo´ gico—FUNCAP; Coordenacąõ de Aperfeic¸oamento de Pessoal de Nı´vel Superior—CAPES; Conselho Nacional de Desenvolvimento Cientı´fico e Tecnoloógico—CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Douglas Melo Coutinho.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest to disclose.

Ethical statements

This article is according with to the international, national and institutional rules considering biodiversity rights.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, L., Donato, I.A., Gonçalves, C.A.C. et al. Antibacterial potential of chalcones and its derivatives against Staphylococcus aureus. 3 Biotech 13, 1 (2023). https://doi.org/10.1007/s13205-022-03398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-022-03398-7

Keywords

Navigation