Skip to main content
Log in

Spatial distribution and community structure of microbiota associated with cowpea aphid (Aphis craccivora Koch)

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Aphid populations were collected on cowpea, dolichos, redgram and black gram from Belagavi and Udupi locations. The samples were shotgun sequenced using the Illumina NovaSeq 6000 system to understand the spatial distribution and community structure of microbiota (especially bacteria) associated with aphids. In the present study, we identified obligatory nutritional symbiont Buchnera aphidicola and facultative symbionts Rickettsia sp. and Bacteroidetes endosymbiont of Geopemphigus sp. in all the aphid samples studied, although in varied abundance. On the other hand, Serratia symbiotica, Arsenophonus sp. and Acinetobacter sp. were only found in aphids on specific host plants, suggesting that host plants might influence the bacterial community structure. Furthermore, our study revealed that microbiota other than bacteria were highly insignificant in the aphid populations. Additionally, functional annotation of aphid metagenomes identified several pathways and enzymes involved in various physiological and ecological functions. Amino acid and vitamin biosynthesis-related pathways were predominant than carbohydrate metabolism, owing to their feeding habit and nutritional requirement. Chaperones related to stress tolerance such as GroEL and DnaK were identified. Enzymes involved in toxic chemical metabolisms such as glutathione transferase, phosphodiesterases and ABC transferases were observed. These enzymes may confer resistance to pesticides in the aphid populations. Overall, our results support the importance of host plants in structuring bacterial communities in aphids and show the functional roles of symbionts in aphid survival and development. Thus, these findings can be the basis for further detailed investigations and devising better strategies to manage the pests in field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw shotgun metagenomic sequence data of the present study was deposited in the NCBI SRA database with the SRA Accession Numbers: SRR14744453—SRR14744457 under the BioProject PRJNA735325.

References

  • Bansal R, Hulbert S, Schemerhorn B, Reese JC, Whitworth RJ, Stuart JJ, Chen MS (2011) Hessian fly-associated bacteria: transmission, essentiality, and composition. PLoS ONE 6:e23170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Besemer J, Borodovsky M (1999) Heuristic approach to deriving models for gene finding. Nucleic Acids Res 27:3911–3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackman RL, Eastop VF (2007) Taxonomic issues. In: van Emden HF, Harrington R (eds) Aphids as crop pests. CABI, Wallingford, pp 1–29

    Google Scholar 

  • Blankenchip CL, Michels DE, Braker HE, Goffredi SK (2018) Diet breadth and exploitation of exotic plants shift the core microbiome of Cephaloleia, a group of tropical herbivorous beetles. PeerJ 6:e4793

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady CM, White JA (2013) Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecol Entomol 38:433–437

    Article  Google Scholar 

  • Brady CM, Asplen MK, Desneux N, Heimpel GE, Hopper KR, Linnen CR et al (2014) Worldwide populations of the aphid Aphis craccivora are infected with diverse facultative bacterial symbionts. Microb Ecol 67:195–204

    Article  PubMed  Google Scholar 

  • Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60

    Article  CAS  PubMed  Google Scholar 

  • Burke GR, Moran NA (2011) Massive genomic decay in Serratia symbiotica, a recently evolved symbiont of aphids. Genome Biol Evol 3:195–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke G, Fiehn O, Moran N (2010) Effects of facultative symbionts and heat stress on the metabolome of pea aphids. ISME J 4:242–252

    Article  PubMed  Google Scholar 

  • Caspi-Fluger A, Inbar M, Mozes-Daube N, Katzir N, Portnoy V, Belausov E et al (2012) Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proc R Soc B 279:1791–1796

    Article  CAS  PubMed  Google Scholar 

  • Chen DQ, Montllor CB, Purcell AH (2000) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid A Kondoi. Entomol Exp Appl 95:315–323

    Article  Google Scholar 

  • Chiel E, Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Katzir N, Inbar M, Ghanim M (2007) Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bull Entomol Res 97:407

    Article  CAS  PubMed  Google Scholar 

  • Chong RA, Moran NA (2018) Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids. ISME J 12:898–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong J, Liu P, Zhou G, Xia J (2020) Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 15:799–821

    Article  CAS  PubMed  Google Scholar 

  • Clark AG, Shamaan NA, Sinclair MD, Dauterman WC (1986) Insecticide metabolism by multiple glutathione S-transferases in two strains of the house fly, Musca domestica (L). Pestic Biochem Physiol 25:169–175

    Article  CAS  Google Scholar 

  • Costopoulos K, Kovacs JL, Kamins A, Gerardo NM (2014) Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens. BMC Ecol 14:1–7

    Article  Google Scholar 

  • Daumann LJ, Larrabee JA, Ollis D, Schenk G, Gahan LR (2014) Immobilization of the enzyme GpdQ on magnetite nanoparticles for organophosphate pesticide bioremediation. J Inorg Biochem 131:1–7

    Article  CAS  PubMed  Google Scholar 

  • Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J (2017) MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 45:W180–W188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas AE (1996) Reproductive failure and the free amino acid pools in pea aphids (Acyrthosiphon pisum) lacking symbiotic bacteria. J Insect Physiol 42:247–255

    Article  CAS  Google Scholar 

  • Douglas AE (2006) Phloem-sap feeding by animals: problems and solutions. J Exp Bot 57:747–754

    Article  CAS  PubMed  Google Scholar 

  • Douglas AE (2011) Lessons from studying insect symbioses. Cell Host Microbe 10:359–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  • Ferrari J, West JA, Via S, Godfray HCJ (2012) Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution 66:375–390

    Article  PubMed  Google Scholar 

  • Gómez-Valero L, Soriano-Navarro M, Pérez-Brocal V, Heddi A, Moya A, García-Verdugo JM, Latorre A (2004) Coexistence of Wolbachia with Buchnera aphidicola and a secondary symbiont in the aphid Cinara cedri. J Bacteriol 186:6626

    Article  PubMed  PubMed Central  Google Scholar 

  • Gott RC, Kunkel GR, Zobel ES, Lovett BR, Hawthorne DJ (2017) Implicating ABC transporters in insecticide resistance: research strategies and a decision framework. J Econ Entomol 110:667–677

    Article  CAS  PubMed  Google Scholar 

  • Guay JF, Boudreault S, Michaud D, Cloutier C (2009) Impact of environmental stress on aphid clonal resistance to parasitoids: role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. J Insect Physiol 55:919–926

    Article  CAS  PubMed  Google Scholar 

  • Guidolin AS, Cônsoli FL (2017) Symbiont diversity of Aphis (Toxoptera) citricidus (Hemiptera: Aphididae) as influenced by host plants. Microb Ecol 73:201–210

    Article  PubMed  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen T (2018) Identifying mechanisms of host plant specialization in Aphis craccivora and its bacterial symbionts. Dissertation, University of Kentucky. https://doi.org/10.13023/ETD.2018.018

  • Hulle M, d’Acier AC, Bankhead-Dronnet S, Harrington R (2010) Aphids in the face of global changes. C R Biol 333:497–503

    Article  PubMed  Google Scholar 

  • Hunter DJ, Torkelson JL, Bodnar J, Mortazavi B, Laurent T, Deason J et al (2015) The Rickettsia endosymbiont of Ixodes pacificus contains all the genes of de novo folate biosynthesis. PLoS ONE 10:e0144552

    Article  PubMed  PubMed Central  Google Scholar 

  • Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RT, Bressan A, Greenwell AM, Fierer N (2011) Bacterial communities of two parthenogenetic aphid species cocolonizing two host plants across the Hawaiian Islands. Appl Environ Microbiol 77:8345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaakeh W, Dutcher JD (1993) Effect of rainfall on population abundance of aphids (Homoptera Aphididae) on pecan. J Entomol Sci 28:283–283

    Article  Google Scholar 

  • Kamphuis LG, Gao L, Singh KB (2012) Identification and characterization of resistance to cowpea aphid (Aphis craccivora Koch) in Medicago truncatula. BMC Plant Biol 12:1–12

    Article  Google Scholar 

  • Koga R, Tsuchida T, Fukatsu T (2003) Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proc R Soc B 270:2543–2550

    Article  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leather SR (1985) Atmospheric humidity and aphid reproduction. Z Für Angew Entomol 100:510–513

    Article  Google Scholar 

  • Lenhart PA, White JA (2020) Endosymbionts facilitate rapid evolution in a polyphagous herbivore. J Evol Biol 33:1507–1511

    Article  CAS  PubMed  Google Scholar 

  • Leonardo TE (2004) Removal of a specialization-associated symbiont does not affect aphid fitness. Ecol Lett 7:461–468

    Article  Google Scholar 

  • Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676

    Article  CAS  PubMed  Google Scholar 

  • Llorca O, Galán A, Carrascosa JL, Muga A, Valpuesta JM (1998) GroEL under heat-shock: switching from a folding to a storing function. J Biol Chem 273:32587–32594

    Article  CAS  PubMed  Google Scholar 

  • Ma CS, Hau B, Poehling HM (2004) Effects of pattern and timing of high temperature exposure on reproduction of the rose grain aphid, Metopolophium dirhodum. Entomol Exp Appl 110:65–71

    Article  Google Scholar 

  • Ma YJ, He HP, Zhao HM, Xian YD, Guo H, Liu B, Xue K (2021) Microbiome diversity of cotton aphids (Aphis gossypii) is associated with host alternation. Sci Rep 11:1–10

    Google Scholar 

  • McLean AHC, Van Asch M, Ferrari J, Godfray HCJ (2011) Effects of bacterial secondary symbionts on host plant use in pea aphids. Proc R Soc B 278:760–766

    Article  CAS  PubMed  Google Scholar 

  • Medina RF, Nachappa P, Tamborindeguy C (2011) Differences in bacterial diversity of host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory. J Evol Biol 24:761–771

    Article  CAS  PubMed  Google Scholar 

  • Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27:189–195

    Article  Google Scholar 

  • Moran NA, Wernegreen JJ (2000) Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol 15:321–326

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc B Biol Sci 253:167–171

    Article  Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    Article  CAS  PubMed  Google Scholar 

  • Najar-Rodríguez AJ, McGraw EA, Mensah RK, Pittman GW, Walter GH (2009) The microbial flora of Aphis gossypii: patterns across host plants and geographical space. J Invertebr Pathol 100:123–126

    Article  PubMed  Google Scholar 

  • Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci USA 102:12795–12800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver KM, Moran NA, Hunter MS (2006) Costs and benefits of a superinfection of facultative symbionts in aphids. Proc R Soc B 273:1273–1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc R Soc B 275:293–299

    Article  PubMed  Google Scholar 

  • Oliver KM, Degnan PH, Hunter MS, Moran NA (2009) Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325:992–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266

    Article  CAS  PubMed  Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T et al (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214

    Article  CAS  PubMed  Google Scholar 

  • Pons I, Renoz F, Noël C, Hance T (2019) Circulation of the cultivable symbiont Serratia symbiotica in aphids is mediated by plants. Front Microbiol 10:764

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao Q, Rollat-Farnier PA, Zhu DT, Santos-Garcia D, Silva FJ, Moya A et al (2015) Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genom 16:1–13

    Article  Google Scholar 

  • Ravin NV, Mardanov AV, Skryabin KG (2015) Metagenomics as a tool for the investigation of uncultured microorganisms. Russ J Genet 51:431–439

    Article  CAS  Google Scholar 

  • Russell JA, Moran NA (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc R Soc B 273:603–610

    Article  PubMed  Google Scholar 

  • Sakurai M, Koga R, Tsuchida T, Meng XY, Fukatsu T (2005) Rickettsia symbiont in the pea aphid Acyrthosiphon pisum: novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera. Appl Environ Microbiol 71:4069–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Ishikawa H (1997) Structure and expression of the dnaKJ operon of Buchnera, an intracellular symbiotic bacteria of aphid. J Biochem 122:41–48

    Article  CAS  PubMed  Google Scholar 

  • Scarborough CL, Ferrari J, Godfray HCJ (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781–1781

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 6:1–4

    Article  Google Scholar 

  • Sepúlveda DA, Zepeda-Paulo F, Ramírez CC, Lavandero B, Figueroa CC (2017) Diversity, frequency, and geographic distribution of facultative bacterial endosymbionts in introduced aphid pests. Insect Sci 24:511–521

    Article  PubMed  Google Scholar 

  • Sivakumar G, Rangeshwaran R, Yandigeri MS, Mohan M, Venkatesan T, Verghese A (2016) Diversity of culturable gut bacteria associated with the field populations of cotton leafhopper (Amrasca biguttula biguttula) in India. Indian J Agric Sci 86:208–215

    CAS  Google Scholar 

  • Skaljac M, Vogel H, Wielsch N, Mihajlovic S, Vilcinskas A (2019) Transmission of a protease-secreting bacterial symbiont among pea aphids via host plants. Front Physiol 10:438

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian PP, Chang CY, Miao NH, Li MY, Liu XD (2019) The facultative endosymbiont Arsenophonus infections alter aphid (Aphis gossypii) performance on the amino acid-deficient diet. Appl Environ Microbiol 85:e01407-e1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi M, Singh R (2014) Systematics and nymphal characteristics of black bean aphid, Aphis craccivora Koch (Homoptera: Aphididae). Int J Life Sci 3:205–224

    Google Scholar 

  • Tsuchida T, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Science 303:1989–1989

    Article  CAS  PubMed  Google Scholar 

  • Vorburger C, Gehrer L, Rodriguez P (2010) A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol Lett 6:109–111

    Article  PubMed  Google Scholar 

  • Wagner SM, Martinez AJ, Ruan YM, Kim KL, Lenhart PA, Dehnel AC et al (2015) Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct Ecol 29:1402–1410

    Article  Google Scholar 

  • Weldon SR, Oliver KM (2016) Diverse bacteriophage roles in an aphid-bacterial defensive mutualism. In: Hurst C (ed) The mechanistic benefits of microbial symbionts. Advances in environmental microbiology, vol 2. Springer, Cham, pp 173–206

    Chapter  Google Scholar 

  • Xu S, Jiang L, Qiao G, Chen J (2020) The bacterial flora associated with the polyphagous aphid Aphis gossypii Glover (Hemiptera: Aphididae) is strongly affected by host plants. Microb Ecol 79:971–984

    Article  CAS  PubMed  Google Scholar 

  • Zhang YC, Cao WJ, Zhong LR, Godfray HCJ, Liu XD (2016) Host plant determines the population size of an obligate symbiont (Buchnera aphidicola) in aphids. Appl Environ Microbiol 82:2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhang S, Luo JY, Wang CY, Lv LM, Cui JJ (2016) Bacterial communities of the cotton aphid Aphis gossypii associated with Bt cotton in northern China. Sci Rep 6:1–8

    Google Scholar 

  • Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38:e132–e132

    Article  PubMed  PubMed Central  Google Scholar 

  • Zytynska SE, Meyer ST, Sturm S, Ullmann W, Mehrparvar M, Weisser WW (2016) Secondary bacterial symbiont community in aphids responds to plant diversity. Oecologia 180:735–747

    Article  PubMed  Google Scholar 

  • Zytynska SE, Tighiouart K, Frago E (2021) Benefits and costs of hosting facultative symbionts in plant-sucking insects: a meta-analysis. Mol Ecol 30:2483–2494

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Empowerment and Equity Opportunities for Excellence in Science (EMEQ) Grant (Project Number: EEQ/2017/000726) of Science and Engineering Research Board (SERB), Department of Science & Technology, Government of India to Shivanna B. We thank Dr. Sunil Joshi, Principal Scientist, ICAR-NBAIR, Bengaluru, for the taxonomic identification of aphid samples. We are greatly thankful to Molsys Pvt. Ltd., Bangalore, for their guidance during metagenomic analysis.

Author information

Authors and Affiliations

Authors

Contributions

SB conceived the idea and designed the study, MMP and MNH performed the experiment, MMP analysed the results and drafted the manuscript, and MKP, SB, PBP, and KS revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. K. Prasannakumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 504 KB)

Supplementary file2 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, M.M., Shivanna, B., Prasannakumar, M.K. et al. Spatial distribution and community structure of microbiota associated with cowpea aphid (Aphis craccivora Koch). 3 Biotech 12, 75 (2022). https://doi.org/10.1007/s13205-022-03142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-022-03142-1

Keywords

Navigation